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APPLICATION OF SySTEBl IDENTIFICATION TO ANALYTIC ROTOR MODELING 

FROM SIMULATED AND WIND T ~ L  DYNAMIC TEST DATA 

Par t  I1 of F i n a l  Report under Contract NAS2-3613 
e 

Abstract 

This report  begins with an int roduct ion t o  aircraft state and parameter 

identification methods. 

is se lec ted  to extract ana ly t i ca l  ae roe la s t i c  rotor models f r o m  simulated 

A s impl i f ied  form of t h e  Maximum Likelihood method 
, 

and dynamic wind tunnel test results for accelerated cyc l i c  p i tch  s t i r r i n g  

excitation. The goal is t o  determine the dynamic in f law cha rac t e r i s t i c s  

for forward f l i g h t  conditions f r o m  t h e  blade flapping responses without 

direct inflow measurements. The rotor blades are es sen t i a l ly  r i g i d  for 

inplane bending and for tors ion  within t h e  frequency range of study, but 

flexible in out-of-plane bending. Reverse flow effects are considered for 

high r o t o r  advance r a t i o s .  

Two inflow models are studied; t h e  first is based on an equivalent 

blade Lock number, the  second is based on a time delayed momentum inflow. 

In  addi t ion t o  t h e  inflow parameters, bas ic  r o t o r  parameters l i k e  the blade 

natural frequency and t h e  actual blade Lock number are i den t i f i ed  together  

with measurement b ias  values. The e f f e c t  o f  the theo re t i ca l  dynamic inflow 

011 t h e  ro to r  eigenvalues is studied. 

t h e  ider- t i f ied parameters and t h e  length of  t h e  input data  is es tab l i shed  i n  

simulation s tudies .  

A r e l a t ion  between the  accuracy of  

It is found t h a t  t h e  first inflow model using an optimized equivalent 

blade Lock number is very accurate f o r  r o t o r  advance r a t i o s  of .4 and above, 

while for lower advance r a t io s ,  t h e  second inflow model using a time 

delayed momentum inflow provides b e t t e r  accuracy. 

model t he  iden t i f i ed  equivalent bck number deviates  systematically f r o m  

t heo re t i ca l  v a l w s  establ ished in t h e  literature. 

For t h e  first inflow 

The iden t i f i ed  ana ly t i ca l  

models are ver i f i ed  by predict ing t h e  t e s t  results not  used in the  

iden t i f i ca t ion  process . 



Preface t o  Final  Report under Contract NASZ-7613 

Work under Contract NASZ-7613 s t a r t e d  on Ju ly  1, 1973. The contract  

w a s  or ig ina l ly  awarded f o r  a 3 year period. 

Due t o  t h e  slower than an t ic ipa ted  progress of t he  experimental work, 

not a l l  research goals had been achieved by 30 June 1976. Since less thau 

the  an t ic ipa ted  cost  f o r  personnel and equipment had been spent ,  the  

research contract  w a s  extended by a year without increase i n  funding. 

The =search goals as s t a t e d  i n  the  cc;ntract were: 

Assess ana ly t i ca l ly  the  e f f e c t s  of fuselage motions on s t a b i l i t y  

and random response. 

overly complex f l i g h t  dynamics ana ly t i ca l  model and t o  study the  

e f f e c t s  of s t r u c t u r a l  and e l ec t ron ic  feedback, pa r t i cu la r ly  f o r  

hingeless rotors .  

Study by computer and hardware experiments t he  f e a s i b i l i t y  of ade- 

quate per turbat ion models from non-linear trf - 1  conditions. The 

problem is t o  ex t r ac t  an adequate l i n e a r  per turbat ion model fo r  the  

purpose of s t a b i l i t y  and random motion s tudies .  

t c  be performed on t h e  bas i s  of t rans ien t  responses obtained e i t h e r  

by computed t i m e  h i s t o r i e s  o r  by model tests. 

(a) 

The problem is t o  develop an adequate but not  

(b) 

The ex t r ac t ion  is 

(c) Extend the experimental methods t o  assess ro to r  wake-blade 

in t e rac t ions  by using a 4-bladed ro to r  model with the  capabi l i ty  

of progressing and regressing blade p i t ch  exc i t a t ion  (cycl ic  p i t ch  

s t i r r i n g ) ,  by using a 4-bladed ro to r  model with hub t i l t  s t i r r i n g ,  

and by t ee t ing  ro tor  models' i n  s inusoidal  up o r  s i d e  flow. 
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Including t h e  f inal  report, 10 repor t s  under Contract NAS2-7613 

They are l i s t e d  as P. 1 t o  P. 10 at the end of have been submitted. 

the Preface. P. 3. and P. 10 pertain t o  research goal (a). 

P. 69 P. 7, P. 89 P. 9, per ta in  t o  research goal (a). 

pertain t o  research goal (c). 

nei ther  hub tilt s t i r r i n g  nor t e s t i n g  is sinusoidal up o r  s ide  flaw 

bas been performed. 

P. 8 and P. 9 combine both FY 1977 work results and sunrmaries of earlier 

results, so t ha t  the  three  pa r t s  of the  Final  Beport can be read without 

recourse to  the earlier reports. 

available when the  preceding Yearly Report P. 7 was written. 

experimental data of P. 9 have a l l  been obtained i n  FY 77. 

So far 3 publications came out of the  research under Contract NAS2-7613. 

P. 2, P. 4 ,  

P. 3 and P. 5 

The latter is not as ye t  complete since 

While P. 10 describes only work done during FY 1977, 

P. 8 includes much new material not  

The 

They are l i s t e d  as P. 11, P. 12, P. 13. 

LAst of Reports and Papers 

under Contract NAS2-7613 

P 1. 

P 2. 

P 3. 

P 4. 

Hohenemser, K. E. and Yin, S. K., "Methods Studies Toward Simplified 
Rotor-Body Dynamtcs", Part I of F i r s t  Yearly Report under Contract 
NAS2-7613, June 1974. 

Hohenemser, K. H. and Yin, S. K., "Computer Experiments i n  Pre- 
paration of System Ident i f ica t ion  from Transient Rotor Model 
Tests", Part  I1 of F i r s t  Yearly Report under Contract NAS2-7613, 
June 1974. 

Hohenemeer, K. H. and Crews,  S. T., "Experiments with a FourBladed 
Cyclic Pitch S t i r r i n g  Model Rotor", Part  I11 of F i r s t  Yearly Report 
under Contract NAS2- 761 3. 

Hohenemser, K. €I., Banerjee, D. 
on System Ident i f ica t ion  from Transient Rotor Tests", Part I of 
Second Yearly Report under Contract NAS2-7613, June 1975. 

and Yin, S. K., "Methods Studies 
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APPLICATION OF SYSTEM IDENTIFICATION TO ANALYTIC ROTOR 

MODELING FROM SIMULATED AND WIND TUNNEL DYNAMIC TEST DATA 

1. INTRODUCTION 

System Identification is a method of correlating a mathematical 

model of a system with transient responses obtained either 

experimentally or from the time history of a more complete analytical 

model of the system. 

perturbation model of a basically non-linear system is to be identified. 

Methods for state and parameter estimation from transients are 

It is particularly useful if a linear 

widely used in aircraft testing (l)*, (2), (3) and (4). The problem 

is to obtain optimum estimates (based on certain performance criteria) 

of initial states and of unknown parameters (derivatives) from noisy 

measurements of some inputs and response variables. In most cases 

of airplane parameter identificatior a constant coefficient system 

is used as an analytical model. 

a periodic coefficient system model may be required (5). 

For lifting rotor applications, 

*The numbers in parantheses in the text indicate references in 
the Bibliography. 
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While the identification of stability and control derivatives for 

fixed wing and rotary wing aircraft from transients is by now a 

well established method, the question arises whether or not similar 

methods can also be used to obtain some insight with respect to 

aeroelastic rotor characteristics. 

equations from a non-linear trim condition, frequency response 

testing is one way to correlate a mathematical model with 

experimental dynamic data. 

for wind tunnel rotor model tests (6) and (7). A less laborious 

and less time consuming method of rotor dynamic testing is to 

extract analytical perturbation models from transient 

The study described herein is the first attempt of accomplishing 

this objective for an aeroelastic rotor model in forward flight 

conditions. Since new ground is covered by extending aircraft 

identification methods to aeroelastic rotor problems, extended 

simulation studies have to be performed to assure the feasibility 

of the identification process. 

%en using linear perturbation 

This method has been occasionally used 

rotor responses. 

A lifting rotor is both structurally and aerodynamically a 

highly complex system that has not as yet been fully explored. 

Each blade has natural modes with predominantly out-of-plane 

(flapping), inplane (lead-lag) and torsional motions that are 

structurally and aerodynamically coupled. 

blades of a rotor are also coupled by hub angular or linear 

motions, by control element motions and by the rotor inflow. 

In the following studies a drastically simplified analytical rotor 

Furthermore the various 
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model will be used, where the blades are essentially rigid in inplane 

and torsional motion and where the rotor hub is also rigidly 

supported. 

considered and the only inter-blade coupling is from the rotor 

inflow. While there is considerable literature on blade flap- 

bending, for example (8), (9) and (lo), and while the steady 

rotor inflow has been frequently studied, for example in (9), 

the only dynamic inflow theory appli,cable to forward flight conditions 

is given in (11). 

advance ratio an analytic inflow model that is an extension of that 

given in (11). 

tunnel test data with the help of state and parameter identification. 

The corresponding study for hovering conditions is presented in (12). 

In addition to the inflow model of (11) a substantially simpler 

Thus only out-of-plane (flapping) blade motions are 

The present study uses for moderate rotor 

It correlates this model with transient wind 

inflow model will also be studied, based on the replacement of the 

blade Lock number by an optimized equivalent value. This concept 

was originally suggested for steady rotor conditions in (8) and for 

dynamic rotor conditions in (13). Theoretically the equivalent Lock 

number should be a complex number but will be assumed here as a real 

number, corresponding to a quasi-steady analysis. The results with 

the two selected inflow models will be compared to the rotor 

responses when the dynamic inflow is entirely neglected as is done 

in most current aeroelastic rotor anaJyses. 
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Lt is seen in (14) that in hovering conditions and using the 

theoretical inflow model of (ll), the damping of the regressing 

rotor flapping mode can be substantially reduced, particularly 

at low collective pitch setting. The effect on rotor eigenvalues, 

of the inflow models studied herein for forward flight conditions, 

will be determined to find out the applicability of the various 

inflow models and the frequency ranges in which they are suitable. 

The sensitivity of the rotor eigenvalues to variations in the 

parameters will also be considered. 
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2. AIRCRAFT STATE AND PARAMETER IDENTIFICATION METHODS 

The review of identificatim methods to be given in the 

following is by no means complete. 

are discussed. 

methods. 

algorithms are found in the cited literature. 

2.1 ELEMENTS OF SYSTEM IDENTIFICATION FROM TRANSIENTS 

Only the most important methods 

Only rough outlines are given for the various 

Details of the derivations and of the application 

System identification is the process of extracting numerical 

values for system parameters and other subsidiary parameters 

(process and measurement noise covariances, bias, initial states, 

etc.) from the time history of control or other inputs and of the 

resulting system responses. 

shown in Figure 1. 

five steps: 

1. 

A schematic for the measurements is 

The process of system identification involves 

Selection of a suitable input that insures participation of 

all important modes of the system in the transient response. 

Selection of sufficiently complete and accurate instrumentation 

to measure the key input and output variables. 

Selection of a mathematical model that adequately represents 

the actual system characteristics. 

2. 

3. 

4. Selection of an efficient criterion function and estimation 

algorithm for the identification of the unknown system 

parameters. 
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Figure 2 .  I l l u s t r a t i o n  of System I d e n t i f i c a t i o n .  
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5. Validation of the i d e n t i f i e d  mathematical model by comparing 

i t s  results t o  test results not used f o r  t he  system iden t i f i ca t ion .  

The concept of system iden t i f i ca t ion  is i l l u s t r a t e d  i n  Figure  2 .  

The design input i s  fed both t o  the actual system and t o  i t s  mathe- 

matical model t h a t  contains the  unknown parameters. 

response, pol luted by measurement noise,  is  compared with the 

computed response from the mathematical model. 

between these two responses, the response e r ro r ,  i s  used i n  the 

parameter estimation technique based on the  c r i t e r i o n  function and 

optimizing technique. 

a p r i o r i  information, e.g., i n i t i a l  s t a t i s t i c s  of  the parameters. 

Here we w i l l  be mainly concerned with the  fourth of t h e  p r e v i o x i ? ,  

l i s t e d  s teps ,  t h a t  i s  with the  various estimation algorithms. 

The measured 

The difference 

The estimation algorithm may a l s o  use 

The mathematical representation of the system w i l l  be givt-1 

i n  t h e  non-linear case by: 

System equation ? ( t )  = f ( x , u , t )  + r ( t )w( t )  

In i t ia l  condition 

Measurement Equation y ( t )  = h(x,u, t )  + v ( t )  

If t h e  system is l i n e a r ,  equations 1 and 2 reduce t o  

x ( t  = 0) = xo 

;(t) = F( t )  x ( t )  + G(t) u ( t )  + 

y ( t )  = H(t) x (t) + D ( t )  u ( t )  + g +  v ( t )  

r ( t )  w(t) 
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2.2 CLASSIFICATION OF JDENTIFICATION ALGORITHMS 

The various estimation algorithms can be c l a s s i f i e d  i n t o  

two groups presented i n  Table 1. The first group l i s t e d  i n  Table 1 

above the double l i n e  is based on statistical regression and does 

not admit a p robab i l i s t i c  in te rpre ta t ion .  

in Table 1 below the  double l i n e  are based on p r o b a b i l i s t i c  

The algorithms l i s t e d  

in te rpre ta t ion .  

noise  is modeled; t he  following 4 methods include both measure- 

In the  equation e r r o r  estimate no measurement 

ment and system noise, while i n  the  output e r r o r  es t imate  no 

system noise  is modeled. 

1 w i l l  be discussed i n  the  following sect ions.  

2.3 EQUATION ERROR ESTIMATES 

The various algorithms l i s t e d  i n  Table 

Fquation e r r o r  methods assume a performance c r i t e r i o n  t h a t  

minimizes the  square of t h e  equation e r r o r  (process noise) .  

They are l e a s t  squares techniques and they require  the  knowledge 

of a l l  response var iables  ( s t a t e s )  and t h e i r  der ivat ives .  In 

the  so ca l l ed  least squares method the unknown parameters a r e  

se lec ted  such t h a t  the in t eg ra l  over t he  square of t he  state 

equation e r r o r  i s  minimized, see  f o r  example (2 ) .  With 

equation 1 we have the  e r r o r  function (the upper in tegra t ion  l i m i t  

T is the  time over which the  measurements a r e  taken) 

T 

0 
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W is a pos i t i ve  d e f i n i t e  weighting matrix. An appropriate 

choice f o r  W would be Q" where Q is the  covariance of t he  

process noise. For the usual d i g i t a l  da t a  processing, t he  

var iab les  k, x, u are sampled, and only ava i lab le  a t  d i s c r e t e  

time poin ts  ti. Mathematically the  sampling process can be 

expressed by multiplying the  system equation with the  d e l t a  

function 6 (t - ti). 

a sum. One can use instead of the  delta function a l so  a d i f f e ren t  

"method h c t i o n ' ' ,  for example tha t  would allow taking the  

Laplace transforms. 

The in t eg ra l  of equation 5 then becomes 

If the  system is  l i n e a r  i n  the  unknown parameters 0, t he  

system equation can be wri t ten  i n  the  form 

Since the  function ins ide  the in t eg ra l  has continuous deriva- 

t i v e s  with respect t o  8 we s e t  

a J / m  = o 

thus r e su l t i ng  i n  the  closed form sc lu t ion  

8 ., = [ 1 FT(x ,u , t )W F ( x , u , t ) d t  1-l J' FT(x ,u , t )W & ( t ) d t  

0 0 
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The first f a c t o r  is t h e  covariance matrix of  the estimate. 

If the system is non-linear i n  the unknown parameters, t he  solut ion 

equation 9 can be replaced by an i t e r a t i v e  solut ion where F(x,u,t)  

is subs t i t u t ed  by af(x,u,Ok,t)/aO and 8 on the left  hand s i d e  is 

replaced by 8 k + l  . 
parameters i n  the nth row of  f (x ,u ,6 , t )  a r e  independent of  a l l  

the elements of i ( t )  except i n ( t ) .  

drawbacks of  the least  squares method, i n  t h a t  only one of  the 

measured s t a t e  der ivat ives  is used i n  determining a given row of  

t h e  f(x,u,e,t) matrix. 

the least squares method does not provide an estimate of the 

parameters r e l a t ed  t o  t h a t  signal. 

the fact  t h a t  the estimate of one row of  the f(x,u,6, t )  matrix 

is obtained independent of  the o the r  rows, and no ff t rade-ofP '  

can be ruade between elements i n  d i f f e r e n t  rows t o  improve the  

estimate. 

* 
I t  can be shown ( f o r  example (1)) t h a t  t he  

This independence i s  one of  the 

If one of  t he  s igna l s  has not been measured, 

This independence also i l l u s t r a t e s  

For some applications it is  p r a c t i c a l  t o  include the state 

vectors i n  the e r r o r  minimization. In the modified least squares 

method a combination of the standard least squares with the 

integrated least squares i s  used. 

method not only t r a c e  the der ivat ive o f  the s ta te  but a l s o  the  

s ta te  i tself  over the selected time in t e rva l .  The performance 

c r i t e r i o n  now includes i n  addition t o  the equation e r r o r  a l s o  the  

integrated equati,.m e r ro r :  

The parameters obtained by t h i s  
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where  W is a p o s i t i v e  d e f i n i t e  w e i g h t i n g  m a t r i x  a n d  w h e r e  

I l A l l ,  a AT w A (11) - 
Minimizing t he  expression, equation 10 r e s u l t s  i n  the estimate 

(12) 

F ( x , u , r )  d t )  dt 

This method has the same row independence o f f ( x , u , e , t )  as the 

standard least squares method. 

Since these methods do not allow for measurement e r ro r s ,  they 

r e s u l t  i n  biased estimates when t h i s  type o f  e r r o r  does e x i s t .  

When measurement e r r o r s  a re  small, as is increasingly the case 

i n  modern instrumentation, t h e  equation e r r o r  method,% preferable 

over other  methods because of i t s  s implici ty .  I t  i s  widely used 
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a l so  when measurement errors are substant ia l  and then serves as 

s tar t -up technique f o r  the  output error and other  i t e r a t i v e  

methods . 
In many applications,  measurements of  some of the  responses 

or t h e i r  derivatives are not available.  If the  response but not 

the rate of response is measured, it is tempting t o  d i f f e ren t i a t e  

the  measured response. However, the  d i f fe ren t ia t ion  of measured 

da ta  introduces additional uncertainty so t ha t  t h i s  technique is 

usually inaccurate. If is used as a methods function, 

Laplace transforms can be used. 

an algebraicmanipulation of the  da ta  tha t  avoids t h e i r  differen- 

ta t ion.  

d i f fe ren t ia t ing  measurement da ta  is discussed i n  (16). 

The estimation then reduces t o  

The Laplace transform technique as a subs t i t u t e  o f  

2.4 BAYESIAN AND QUASI-BAYESIAN PARAMETER ESTIMATJS 

In the preceding methods we specif ied a cost  c r i t e r i o n  J 

t h a t  represented the  "loss" resu l t ing  from an incorrect  estimation 

of the unknown system parameters. 

selected i n  such a way a s  t o  minimize the  loss. 

probabi l i t i es  ex i s t  not only fo r  the measurement errors but a l so  

for the  unknown parameter vector 8 then one can define an expected 

loss and se l ec t  the parameter vector i n  such a way as to  minimize 

t h i s  expected loss. 

see fo r  example (17). 

The parameters were then 

If a p r i o r i  

Such an estimate is cal led a Bayesian estimate, 

The form of a Bayesian estimate depends on the form of both 

t h e  loss function and of the a p r i o r i  probabi l i ty  d is t r ibu t ion  of 

the measurement and the parameter vector. 
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For the particular case of positive semi-definite quadratic loss 

functions,the Bayesian estimate is the mean of 8 conditioned on 

the observations. 

meascrement and parameter vector (18) and (19). 

shown that for the case of unimodal symmetric a posteriori distri- 

bution of the parameters given the observations, the Bayesian 

estimate is the conditional mean for all loss functions which 

are symmetric and convex upwards. 

estimate can be defined generally as the conditional mean of the 

parameter distribution. 

This is true regardless of the distribution of 

It has also been 

For these reasons the Bayesian 

In order to compute the conditional mean,it is first necessary 

to determine the conditional probability density for 8 .  

density can be written from Bayes rule as (Z is the set of all 

observations) 

This 

The denominator is a normalizing factor determined from 

The optimal Bayesian estimate is now given by 

(13) 

(14) 

In genera1,the evaluation of equations 14 and 15 would require the 

solution of the system equations for all possible values of the 

parameter vector 8 .  
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This is a large effort, especially if the dimension of 0 is large. 

If p(0/2) is unimodal and symmetric about its mean value, the 

conditional mean corresponds to the mode. Since p(2) is merely 

a scale factor the finding of the mode requires neither the 

evaluation of the integral in equation 14 nor that in equation 1s. 

The mode 8 of 0 has the property 

Even if the a priori density p(0) is symmetric it does not follow 

that the conditional density p(0/Z) is also symmetric since in 

general the observations depend non-linearly on the parameters. 

Estimation according to equation 16 is, therefore, called 

"quasi-Bayesian" estimation. Another designation used for example 

in (3) is maximum a posteriori probability (MAP) parameter estimate. 

Since the logarithm is a monotonic function of its argument,we can 

replace equation 16 by maximizing the expression 

If no a priori information about the parameters 0 is available, 

that is, if the a priori density is uniform, p(0) = constant, the 

quasi-Bayesianestimate redjces t9 the ltMaximum Likelihood" estimate 

which involves finding the maximum of p(Z/B). 

2.5 ESTIMATES ASSUMING GAUSSIAN DISTRIBUTIONS 

The evaluation of equation 17 becomes particularly convenient 

if we assume Gaussian densities for the parameters, for the observations 

and for the system states. In linear systems and linear measurement 
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equations (equations 3 and 4) one needs only to assume that the 

system noise w(t) and the measurement noise v(t) is Gaussian. 

It then follows that states x(t) and observations y(t) are also 

Gaussian. 

tends to a Gaussian density as the sampling rate is increased (see 

for example (l), p.29). The assumption of Gaussian densities for 

all variables is, therefore, a reasonable one. Since 0 is a m x 1 

vector we now have the a priori density 

For non-linear systems with Gaussian noise, p(Z/0) 

Except for a constant additive term, log p(0) is now given by 

In order to obtain an expression for log p(Z/0) in equation 17, 

we assume that 2 consists cf N consecutive observations y(1) .. y(N). 
2 = YN = Iy(l), . . y(N)) ( 2 0 )  

With successive application of Bayes r u l e  we obtain 

o......... 
N 

Taking the logarithm we have 

N 
log p ( Y N / Q )  = C log, p(y(j)/yj-19 0 )  

I=1 
( 2 2 )  

[ y(j)/Yj-l,O) is the observation estimate at time j given all 

preceding observations and given the parameters. We denote the 
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observations by y( j )  and its expected value and covariance 

respectively by y(j/j-l) and B(j/j-1). We further denote the 

*tinnovation** by 

A 

Since y(j)  is a r x 1 observation vector, its Gaussian 

density is 

p ( y ( j ) )  = lB(j/j-l)l -ll2 ( 2 a  exp{ -(1/2)vf( j 1 
(24 )  

B”( j / j - l ) u (  j 1) 

Taking the logarithm of equation 24, summing according to 

equation 22, inserting in equation 17 and inverting the sign we have 

now to minimize the expression (see also equation 19) 

If no a priori information is available before taking observations, 

the last term in the expression 25 is constant and we then have 

the criterion for the Maximum Likelihood estimation. Bayesian or 

quasi-Bayesian estimation is rarely used since a priori densities 

for the parameters are in most applications not available. 

2.6 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION 

According to expression 25, Maximum Likelihoodestimation is 

equivalent to minimizing the so-called likelihood function 
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In the presence of system noise the s i r imiza t i cn  a f  t h e  

expression 26 is very d i f f i c u l t .  Wen going from t i m e  j -1  t a  

time j one first has t o  solve the prediction equations for the  

estimate of  the state and for its covariance. 

system equation 3 with zero mean Gaussian system noise w ( t )  

prediction is given by 

.i\ssuming the l i nea r  

the 

a( j I j -1 )  = F ~ ( j 1 7 - 1 )  + s J(t) , (j-1) 5 t 5 j ( 2 7 )  

where Q is t h e  system noise covariance and P t he  state covariance. 

These equations use the  estimated s t a t e  and its covariance a t  time 

j-1: i ( j - l / j - l )  and P ( j - l / j - l j ,  t o  predict  the s ta te  and its 

covariance a t  time j :  i(j,’j-1) and P ( j / j - 1 ) .  This is the pre- 

dict ion before w e  know the r e su l t  of  the observations a t  time j .  After 

the observations y ( j )  have been made t h e  optimum estimate is given 

by the  Kalman f i l t e r  equations f o r  the s t a t e  and for its covariance: 

w i t h  t h e  filter gain 
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The covariance of the observations B(j/j-1) that occurs in the 

cost function 26 is given in terms of the state covariance before 

observations by 

(32) 
T B ( j / j - l )  = H P ( j l j - 1 )  H + R 

-. .. . 
Thus the terms in the expression 26 that is to be minimized require, 

the solution of the prediction equations 27 and 28 for each time 

interval and of the up-date equations 29 and 30 at each sampling 

time together with the solution of the measurement equation 4. 

(1) gives an algorithm for the solution of the problem. However, 

due to its complexity this algorithm has not as yet been applied 

to a practical problem of aircraft parameter estimation, see for 

example (20). 

The problem of minimizing the expression 26 is greatly simpli- 

fied if the observation covariance B(j/j-1) can be assumed 

constant. 

according to equation 32, B(j/j-1) = R. The problem then reduces 

This is for example true for zero system noise, when 

to minimizing the cost function 

j=l 

wh re v ( j )  is given by the innovation term 23. Sin equation 33 

represents (according to equations 2 and 4) the sum of the measure- 

ment error squares, the estimation with equation 33 is also called 

output error method of estimation. There are several algorithms 
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available to perform the optimization of J(0) from equation 33. 

The most widely used is the modified Newton-Raphson or quasilinear- 

ization method. It has the advantage that the sensitivity or information 

matrix is obtained as a byproduct. The inverted information matrix 

gives the Cramer-Rao lower bound for the parameter covariance. 

This lower bound is found in many applications to be a more meaningful 

measure of the accuracy of the parameter estimate than the parameter 

covariance obtained from the equation error method (first factor in 

equation 9). 

A block diagram of the complete and the simplified Maximum 

Likelihood identification procedure is shown in Figure 3. 

loop is indicated by double lines. 

by dashed lines, the Kalman filter reverts to the deterministic 

The iteration 

Neglecting the three signals shown 

solution of the system equations. 

2.7 SOME PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATE 

The Maximum Likelihood estimation technique has several 

theoretically justifiable properties which makes it the best accepted 

estimation technique to date. 

Maximum Likelihood method are: 

Some of the proven properties of the 

1. The Maximum Likelihood estimate is consistent, i.e., the parameter 

estimates converge (in probability) to its true values as the number 

of observations N approaches infinity. 

2. The Maximum Likelihood estimate is asymptotically GaussiRn. 

3. The Maximum Likelihood is invariant, i.e., if Q is the Maximwn 
6 

Likelihood estimate of the parameter vector 8, and if u(Q) is a 
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A 

function of 8 with a single valued inverse, then u(0) is the 

Maximum Likelihood estimate of u(0). 

4. The Maximum Likelihood estimate has a variance that approaches 

the Cramer-Rao lower bound asymptotically, i.e., it is asymptotically 

efficient. 

I t  can be easily shown that((l7) and (19)), from a Bayesian point 

of view, the Maximum Likelihood parameter estimates for our model 

are unbiased. 

The next question of interest would be a comparison of the 

covariance of the parameter estimates obtained from different 

estimation techniques. It can be seenthat an efficient estimator 

(i.e., that estimation scheme which gives the parameter covariance 

equal to the Cramer-Rao lower bound) can on11 be the Maximum Likelihood 

estimator. An efficient estimator also has t o  satisfy 

a0 = E ( Z )  - O]k(B) (34) 

6 A 

where 0(Z) is an unbiased estimate of 0 (i.e., E(B(Z)) = e) ,  J is 

the likelihood function and k ( 0 )  is any function of 0. Hence, if 

the likelihood function J does not satisfy equation 34, then 

nothing is known about the covariance of the parameter estimates 

obtained by the Maximum Likelihood method. In the above condition, 

unbiased estimators which give lower covariance than the Maximum 

Likelihood estimator may exist, though there does not exist any 

general rule for finding them. 
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2.8 OUTPUT ERROR METHOD USING QUASILINEARIZATION 

We use an i terative method beginning with an i n i t i a l  parameter 
* 

estimate 0 = . The problem is  t o  f ind  a zero of  t he  gradient 

of t he  cost function 33, aJ/W = 0. Consider a two-term Taylor 

series expansion of aJ/W about the kth i t e r a t i o n  value of 0 

A where  

A e k + l  = e k + l  - ek 

(a2 J/ a02)k is the second gradient of the cost  function with respect 

t o  0 a t  the kth i t e r a t i o n .  I f  equation 35 is a s u f f i c i e n t l y  

close approximation, t he  change i n  8 for the  ( k + l ) t h  i t e r a t i o n  

t o  make (aJ/W),+, approximately zero is 

one obtains for  the first and second gradients of  t he  cost  function 
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a We thus need solut ions for u(j) ,  and u(j ) ,  . For t h i s  purpose 

we first solve the system and measurement equations 
8 

., 
y = h ( 2 , u . t )  

fbr each i t e r a t i o n  khereby the  i n i t i a l  conditions are e i t h e r  obtained 

from the  measurements o r  are included i n  the  unknown parameters 0. 

The innovation is  now obtained from equation 23. 

" sens i t i v i ty  equationstt f o r  each i t e r a t i o n  

Next we solve the 

The i n i t i a l  conditions of a;/ae a r e  zero except when x(0) is 
i 

iden t i f i ed  as p a r t  of t he  parameters 

p a r t i a l s  have the value one. With equation 23 we can now compute 

the first and second gradient of the cos t  function, equations 38 

0. In t h i s  case the  i n i t i a l  

39, and then obtain the  change i n  parameters f o r  t he  next i t e r a t i o n  

from equation36. This involves the  inversion of the s e n s i t i v i t y  

matrix M (equation39), whereby M-1 is the Cramer-Rao lower bound 

f o r  the covariance of the parameters. 

The method is e a s i l y  extended t o  the case with a p r i o r i  informa- 

t i on  on t h e  parameters, equation 25. 

then augmented by the term 

The s e n s i t i v i t y  matrix 39 is 

2P-1 ,  and the gradient 38 is augmented 
e 

by the term 2P-1 (e - 0 ) , see (16). 
8 0 k-1 
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2.9 P A W T E R  ESTIMATION BY FILTERING 

The parameter estimation methods discussed so far can be denoted 

as "global" methods. 

data  f o r  t he  entire duration of the t r ans i en t .  

important t o o l  i n  s ta te  and parameter estimation. I t  can be used 

e i t h e r  i n  conjunction with global estimates,  o r  it can be used as 

a d i r e c t  approach t o  s ta te  and parameter estimation. 

of t he  firat type of  f i l t e r  appl icat ions i s  the p r e f i l t e r i n g  of  

tes t  da t a  before using them in  a least squares regression estimate, 

see f o r  example (3). 

frequency noise.  

var iables  and t h e i r  rates not d i r e c t l y  measured. 

the noise i n  the measurements. The r o l e  of the Kalman f i l t e r  i n  

M a x i m u m  Likelihood estimation has been shown i n  equations 27 t o  31, 

where it is  used t o  e s t ab l i sh  the innovation sequence. 

The performance c r i t e r i o n  includes the  t e s t  

F i l t e r i n g  is an 

An example 

The Graham d i g i t a l  f i l t e r  can remove high 

A Kalman f i l t e r  can be used t o  estimate state 

It a l s o  removes 

I n  addition t o  applications i n  global estimation methods, 

f i l t e r s  can a l s o  be used as s u b s t i t u t e s  f o r  global methods. 

advantage of  such d i r e c t  f i l t e r  methods is a reduction i n  computer 

e f f o r t  pa r t i cu la r ly  in cases with a large number of parameters. 

disadvantage is t h a t  unlike the inverted information matrix of t he  

Maximum Likelihood method t h a t  provides a lower bound on the parameter 

covariances, no physically meaningful parameter covariances are 

obtained with the d i r e c t  f i l t e r  methods. The covariance propagation 

equations require i n i t i a l  values t h a t  a r e  usually impossible t o  

obtain in  any rat ional  way. 

(forward time integrat ion)  can be achieved by smoothing (backward 

The 

The 

Though improvements of the f i l t e r  solnt ion 



time in t eg ra t ion ) ,  t he  f i n a l  parameter covariances remain a rb i t r a ry ,  

since they evolve from a r b i t r a r y  i n i t i a l  covariance estimates.  

Assuming t h a t  a l l  s t a t e  var iables  and t h e i r  r a t e s  have been 

e i t h e r  measured o r  are otherwise known from manipulating t h e  measure- 

ment data,  t he  unknown parameters, i f  they occur i n  l i n e a r  form i n  

t he  s t a t e  equation, can be found by application of a l i n e a r  f i l t e r ,  

see f o r  example ( S ) .  The c l a s s i c a l  regression method i s  a special  

case of t h i s  d i r e c t  f i l t e r i n g  method, namely for i n f i n i t e  i n i t i a l  

parameter covariances. 

value of  the e r r o r  covariance matrix. 

allows the  use of a f i n i t e  i n i t i a l  e r r o r  covariance matrix and it 

gives the evolution of  t h i s  matrix as a function of time. 

obtains an indication when t o  s top processing the test  data a f t e r  

t h e i r  information contents has bean exhausted. 

the absolute values of the e r r o r  covariances are  meaningless, since 

one usually does not have a ra t ional  way of es tabl ishing i n i t i a l  

values f o r  the parameter covariances. 

In c i a s s i c a l  regression one obtains a s ing le  

The d i r e c t  f i l t P r  application 

One thus 

As mentioned before, 

A method t h a t  appears t o  be economic o f  computer time f o r  

large numbers of unknown parameters was used i n  (3) f o r  application 

t o  hel icopters .  The method consis ts  of a simultaneous iden t i f i ca t ion  

of states and parameters with the help o f  a non-linear f i l t e r .  In 

other words, t he  unknown parameters a re  t reated a s  a d i i t i o n a l  s t a t e  

variables.  Since there  occur products of s t a t e  variables and para- 

meters, the system equation i s  a non-linear one. 

Kalman f i l t e r  appears t o  be pa r t i cu la r ly  useful fur t h i s  purpose. 

'Ihe so  cal led extended 
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Either non-linear filtering alone or linear filtering in combination 

with smoothing is performed. 

covariances are again of no physical sigificance since they depend 

on the arbitrary initial values. 

of the direct use of filters in parameter estimation is given. 

2.10 LINEAR FILTER METHOD OF P A W T E R  ESTIMATION 

2.10.1 

The absolute values of the parameter 

In the following, a brief discussion 

Linear Sequential and Global Estimators 

In ( 5 )  the parameter identification is performed from a 

"system equation" . 
e = o  (42) 

and a "measurement equation" 

5 = h(x,0)+v (43) 

Lquation 43 is actually the system equation arranged in i t  form where 

the left hand side contains all terms that are free of the unknown 

parameters 8 .  

variables x and in the unknown parameters 8 ,  h(x,B) is a linear 

function of the parameters. The noise vector v refers only to 

the terms on the left hand side of equation 43. 

that are multiplied by the unknown parameters in h(x,0) must be 

noise free. To obtain the parameter 0 ,  both 5 and x must be 

known. If only part of the variables in 5 and x have been measured, 

Kalman filtering is required in order to reconstitute the missing 

terms. 

If the system equation is linear in the state 

The state variables 
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Optimal parameter estimates 0 can be obtained, under the  

assumption that v 

t he  cost function 

is zero mean Gaussian white noise, by minimizing 

where t he  a p r i o r i  estimates 

together with the  noise  covariance matrix R. The d i f f e r e n t i a l  

equations associated with t h i s  optimal problem a re  (see f o r  example 

e(O) ,  Pe(0) are assumed t o  be given 

(211 1 

These equations can be integrated with the  a id  of the  i n i t i a l  a 

p r i o r i  estimate for t h e  parameters 0(0) and t h e i r  covariance 

matrix 

each time t given t h e  preceding measurements. Since the i n i t i a l  

parameter covariance is usual ly  not known and t h e  assumed values 

a re  r a the r  a rb i t r a ry ,  t he  matrix PQ from the  integrat ion of 

equation 46 is not a useful measure of the  actual  parameter covari- 

ance. 

fu r the r  measurements on the estimate 

Pe(O),  which r e s u l t s  i n  the optimal parameter estimate a t  

However, once Pe has approached zero, the e f f e c t  of any 

0 a l s o  approaches zero as  is 
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evident from equation 45. 

for what length of time the data should be processed. 

Po, therefore, is valuable in judging 

Equations 

45 and 46 represent the "linear estimator" used in (22) and ( 5 ) .  

Instead of the sequential estimation by integrating equations 

45 and 46 with some initial estimates 

also obtain a "global" estimate directly from equation 44. 

assumes that one and the same parameter estimate 

O(0) and Pe(0 ) ,  one can 

If one 
* 
0 is valid 

throughout the time range from 0 to T, one obtains by setting 

w/ae = o 

(See for example the appendix of ( S ) . )  

P-'(O) = 0, which means an infinite initial parameter covariance 

matrix. Then the above estimate, equation 47, reduces to the 

equation error estimate, equation 9.  The initial estimate e(0) 

A convenient assumption is 

e 

is then not required and the evaluation of equation 47 is reduced to 

the determination of fixed boundary integrals, a matrix inversion 

and a matrix multiplication. 

the time 

The parameter covariance matrix a t  

T is given by the first factor of equation 47: 

T 
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W h i c h  follows f r o m  the  in tegra t ion  of equation 46, (see f o r  example 

the appendix of (S)]. Po(T) 

judge whether o r  not  a l l  t h e  s ign i f i can t  information contents has 

been ex t rac ted  f r o m  the data. 

2.10.2 

f r o m  equation 48 can again be used t o  

I t e r a t i v e  Equation Error Estimation with Updated Kalman Filter 

When using the  parameter estimation methods of t he  preceding 

sect ion,  it i s  necessary t o  first determine, f r o m  t he  noisy def lec t ion  

measurements, estimates for the  def lec t ions ,  f o r  t h e i r  rates, and for 

the  accelerations. 

def lec t ion  da ta  through a d i g i t a l  f i l t e r  t h a t  takes  out t he  noise  

above a c e r t a i n  frequency without d i s t o r t i n g  the  s igna l  i n  the  low 

frequency range. The f i l t e r e d  def lec t ions  were then e i t h e r  

d i f f e ren t i a t ed  twice, o r  a Kalman f i l ter  w a s  appl ied i n  order  t o  

obtain the  der iva t ives .  Later s tudies  i n  (22) showed la rge  e r r o r s  i n  

the  2arameters f o r  too low cut-off frequency of the d i g i t a l  filter. 

I t  w a s  then decided i n  (22) t o  omit t h e  d i g i t a l  f i l t e r  and instead 

use the  Kalman f i l t e r  in  an i t e r a t i v e  way. 

it was found i n  (22) t h a t  t he  second i t e r a t i o n  was as accurate  as 

the  r e s u l t  with the  combined d i g i t a l  and Kalman f i l t e r .  

diagram of the  method is shown i n  Figure 4. 

indicated by the  double l i nes .  

gives optimal s t a t e  estimates from incomplete and noisy input 

and output measurements. 

parameters t h a t  a r e  updated a f t e r  each i t e r a t i o n .  

In (22) t h i s  was done by passing the  noisy 

In typ ica l  examples, 

A block 

The i t e r a t i o n  loop is  

The system Kalman f i l t e r  

The f i l ter  needs estimates of t he  system 
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Only simulated noisy blade flapping measurements were used in 

the Kalman filter. The filter provided the deflection rates and 

accelerations needed for the ttglobalt* parameter estimate, but not 

the deflections themselves. 

was performed with the simulated noisy deflection measurements and 

In other words, the parameter estimate 

with the rates and accelerations from the Kalman filter. In the 

first iteration, a Kalman filter with estimated parameter values 

was used (typically 20% error). 

had been obtained, a second pass with an updated Kalman filter was 

performed, etc. 

After updated parameter values 

The deflection data remained the same for each 

iteration, but the rates of deflection and the accelerations were 

updated. 

2.11 BAYESIAN ESTIMATION As A FILTERING PROBLEM 

This method worked well for the single blade identification. 

If we extend the quasi-Bayesian or maximum a posteriori 

probability (MAP) criterion 16 to include both the parameters 0 

and the states x(t), we have 

Assuming now the non-linear system and measurement equations 1 

and 2, and assuming further that states and parameters have Gaussian 

distributions of the form of equation 18, the criterion 49 becomes 

(see (3) and (23) ) one of minimizing the quadratic function 

T -9 
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subject t o  the  constraint equation 1. If t h e  system and measurement 

equations 1 and 2 are l inear ized  about the  

the recursive so lu t ion  of  t he  minimization 

extended Kalman f i l t e r  equations given fo r  

(see (3) 1 

¶ 

current  estimates x and 8 

problem 50 r e s u l t s  i n  t he  

the  continuous case by 

. .I 

Even i f  the  o r ig ina l  system is l i n e a r ,  the augmented system is 

non-linear and hence the  f i l t e r i n g  problem must be solved by a 

non-linear f i l t e r i n g  technique. In (3) the raw data  a r e  pre- 

processed by a d i g i t a l  f i l t e r  and by a Kalman f i l t e r  t h a t  does not 

use the  unknown parameters but merely makes use of t he  transformation 

equations from a space-fixed t o  a body-fixed reference system 

(Euler equations). 

Lebacqz i n  (24) appl ies  bas ica l ly  the same method except f o r  

a d i s c r e t e  instead of the  continuous f i l t e r  formulation. He fu r the r  

uses a me s tage  filtering-smoothing algorithm which has the  advantages 

of reducing the b ias  due t o  non- l inear i t ies  and of making the  algorithm 

l e s s  s ens i t i ve  t o  i n i t i a l  conditions. Mehra, i n  (1) , is  c r i t i c a l  

o f  using an extended Kalman f i l ter  f o r  the  augmented s t a t e  including 

the  unknown parameters. His arguments a re  t h a t  the  uncer ta in t ies  
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i n  the  states are usually much smaller than the  uncertaint ies  i n  the  

parameters. 

latest estimate which are acceptable for s ta te  estimation with an 

Therefore the  assumption of loca l  l inear iza t ion  about the 

extended Kalman f i l t e r  are generally less val id  f o r  parameter 

estimation. Moreover, the f i l t e r  f o r  t he  augmented state assumes 

knowledge o f  the a p r i o r i  parameter covariances which are unknown. 

As mentioned before, the  a rb i t r a ry  a p r i o r i  parameter covariance 

used as i n i t i a l  conditions f o r  a f i l t e r  t h a t  includes parameters 

as state variables gives unreliable confidence limits on the  para- 

meter estimates. An added d i f f i c u l t y  of applying a f i l t e r  t o  the  

augmented state is t h a t  poor a p r i o r i  estimates of the  parameters 

make the convergence rate slow o r  may even cause divergence of the 

f i l t e r  solution. Though improvements can be applied t o  the  extended 

Kalman f i l t e r  l i k e  local  smoothing and local  i t e r a t i o n  and smoothing, 

the basic shortcomings of t h i s  method appear t o  have been cor rec t ly  

described i n  (1). Unfortunately, the application o f  the complete 

algorithm of Maximum Likelihood ident i f ica t ion  given i n  (1) is for 

a large system much more demanding of computer s i z e  and time than the 

f i l t e r  solution with the augmented s ta te .  

ident i f ica t ion  with the complete Maximum Likelihood algorithm of 

(1) has not as yet been accomplished, the method of f i l t e r i n g  the 

While a i r c r a f t  parameter 

augmented state has been applied t o  several a i r c r a f t  parameter 

ident i f ica t ion  cases, f o r  example i n  (3) and (24). 

2.12 IDENTIFIABILITY PROBLEMS 

Iden t i f i ab i l i t y  problems can occur no matter what ident i f ica t ion  

algorithm is  used. They a re  re la ted  t o  the i n i t i a l  3 s teps  involved 

in  system ident i f ica t ion  as l i s t e d  at the  beginning of t h i s  chapter: 
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the selection of a suitable input, the selection of the instrumen- 

tation, and the selection of the mathematical model. 

are added here to poiut out some difficulties that have been 

encountered due to these three initial steps. 

A few comments 

If the input does not adequately excite some of the system 

modes, the associated parameters cannot be adequately identified. 

Sometimes it is practical to combine the responses to various types 

of inputs into a single identification run, see (3). While each 

of the single inputs excites only a limited number of modes, the 

combination of inputs provides an adequate excitation of all modes 

required for the estimation of the parameters. 

been made to design inputs on the basis of certain optimization 

criteria. More details on this problem are given in (25). 

Efforts have also 

If there are large unaccounted for instrumentation errors, 

non-physical parameter values may result. In (26) ,  instrumentation 

lags and control measurement errors were found to be most significant. 

Static measurement errors and instrumentation lags can be a much 

greater source of parameter inaccuracies than white noise. 

detailed analysis of the relationship between static and dynamic 

measurement errors in states and control inputs and the accuracy 

of the parameter estimates is required. 

A 

If the selected mathematical model for the system is inadequate 

the parameters are forced to account for some unmodeled effects. 

The estimated parameters may, therefore, be quite different from 

those determined by aerodynamic theory or wind tunnel tests would 

indicate. A good example is given in (27) where a six degree of 



freedom mathematical model for a helicopter gave unrealistic 

derivatives, since it had to account for effects of some neglected 

modes. 

copter flight dynamics does not actually exist. 

of freedom mathematical model is used, these difficulties disappear. 

Modeling errors are also a major cause for the lack of convergence of 

iteration procedures or of parameter identification by filtering 

methods. 

is the adoption of a more suitable mathematical model. 

measures to improve the convergence of iteration procedures or of 

filtering methods will be briefly discussed. 

priori values of parameters, for example from theory or from wind 

tunnel tests, are available, one can use an a priori weighting 

matrix that expresses the confidence in these values and prevents 

the algorithm from deviating too much from the a priori values. 

Sometimes there exist some relationships between the parameters. 

These should then be used as constraint.' in the optimization problem 

to avoid non-physical parameter estimates. 

exist, difficulties are encountered in inverting the information 

matrix. 

zero eigenvalue of the information matrix. 

makes use of the fact that in case of near parameter dependencies 

there is a large spread between a set of small eigenvalues and another 

set  of much larger eigenvalues of the information matrix. 

A unique six degree of freedam linear model for the heli- 

When a nine degree 

The best remedy against difficulties from modeling errors 

Some other 

In the cases where a 

I f  parameter dependencies 

An exact dependency between parameters should result in a 

A rank deficient solution 

In filter solutions, divergence because of modeling errors can 

occur when the covariance matrix becomes prematurely t o o  small, thus 
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prevonting f u r t h e r  test da ta  t o  be of  influence. 

ways to  prevent premature small covariances. 

f i c t i t i o u s  noise  input t o  t h e  system o r  one can d i r e c t l y  increase the 

parameter covariance i n  each time s t e p  according t o  some rule .  

There are several 

One can provide 

One 

can a l s o  overweigh the  most recent data  thus causing the f i l t e r  t o  

reduce its memory of the data  o f  the more d i s t a n t  past .  

i n d i r e c t l y  increases the  parameter covariance matrix. 

s h o r t  da t a  length and too large e r r o r s  i n  the  i n i t i a l  parameter 

estimates may a l s o  r e s u l t  i n  non-physical parameter values o r  i n  

divergence of  the iden t i f i ca t ion  algorithm, longer t r a n s i e n t s  and 

b e t t e r  a p r i o r i  parameter estimates can lead t o  the  avoidance of  

these d i f f i c u l t i e s .  

2.13 VALIDATION OF ESTIMATES 

This 

Since too  

Once a set of  parameter estimates has been obtained the  question 

arises: what confidence can be associated with t h i s  set? As 

mentioned before, the parameter covariance matrix obtained by 

f i l t e r i n g  the augmented s ta te  is not a good measure of  t h i s  confi- 

dence. The inverted information matrix obtained with the M a x i m u m  

Likelihood method represents the Cramer-Rao lower bound f o r  the 

parameter covariances and is a b e t t e r  measure of  t h i s  confidence. 

Using the  parameter estimates t o  predict  the t r ans i en t s  from 

which the estimates have been obtained, and computing t h e  

e r r o r  with respect t o  the measured t r ans i en t s ,  gives another confidence 

measure. However, i f  the system is  inadequately modeled, one may 

obtain a small 

values a r e  wrong i n  comparison t o  theo re t i ca l  o r  wind tunnel r e s u l t s ,  ( 2 7 ) .  

rms 

rms e r r o r  despi te  the f ac t  t h a t  the parameter 
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A better way of validation is to compare the prediction with the 

results of test data - not used in the identification process. In 

fact, it is good practice not to use all of the available test 

data for the parameter identification but to reserve some of the 

runs for such a comparison. Sometimes it is desirable to perform 

the parameter identification not just with one mathematical model 

but with a variety of models. 

a mathematical model .ciith more parameters gave a much better identi- 

fication result than a model with fewer parameters, better in the 

sense of an improved correlatioz with theoreticall- and wind tunnel 

generated parameters. 

models with a larger naber of parameters gave worse identification 

results than a model with fewer parameters, see (28). Adequate 

parameter estimation from transients requires careful attention to 

the many contributing factors in the input, instrumentation, 

mathematical modeling, and the estimation algorithm, and the 

validation of this process I only be considered complete after 

the rms errors of the prediction with the estimated parameters 

as compared to test data have been found acceptably small for all 

types cf possible transient excitations of the system. 

2.14 APPLICATIONS TO LIFTING ROTORS 

In the case described in (27), 

However, there are also cases where mathematical 

Lifting rotor characteristics are not well approximated by the 

usual set of aerodynamic derivatives. 

that must be considered particularly in rapid transients. 

reason is the dynamic rotor wake that is produced by the time 

varying rotor thrust .,.rd rotor pitching and rolling moments and that 

One reason is blade modes 

Another 
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has a feedback effect on the  r o t o r  forces and moments. The omission 

of the  blade modes, as shown i n  (27),  results i n  non-unique and 

non-physical r o t o r c r a f t  der ivat ives .  

i f  separate  rotor degrees of  freedom are introduced even i n  the  

 crud^ form o f  a first order lag as was done i n  (4 ) .  

The iden t i f i ca t ion  is b e t t e r  

A va r i e ty  o f  i den t i f i ca t ion  methods has been used with respect 

t o  l i f t i n g  ro to r s .  

d i g i t a l  f i l t e r  followed by a Kalman f i l t e r  t h a t  does not contain the 

aerodynamic der ivat ives  (transformation o r  Euler equations), least 

squares iden t i f i ca t ion  i s  applied t o  ro to rc ra f t  t r ans i en t  f l i g h t  

tes t  da t a  i n  (3) and (27). Each iden t i f i ca t ion  run is  made with 

several t r ans i en t s  simultaneously. The least squares r e s u l t s  are 

then used as s t a r t -up  values f o r  aq extended Kalman f i l t e r  f o r  

the augmented state. 

f i l t e r  actual ly  improves on the l e a s t  squares r e s u l t s ,  though f i l t e r  

convergence is achieved. In (4) the output e r r o r  method with quasi- 

l i nea r i za t ion  is  applied without preprocessing the f l i g h t  test  data.  

The f l i g h t  data of  both (3) and (4) were obtained in  calm a i r .  The 

equation e r r o r  method i n  its f i l t e r  form was applied i n  (5) t o  

simulated noisy blade flapping and tors ion measurements a t  high rotor  

advance r a t i o .  

d i g i t a l  f i l t e r ,  but not by a Kalman f i l t e r .  (5) assumed tha t  a l l  

states and t h e i r  der ivat ives  had been measured. In contrast  (22) 

assumed t h a t  only flapping def lect ions a r e  measured but not f l a p p h g  

r a t e s  o r  f lapping accelerat ions.  For the dynamic wind t u n n e l  tests 

simulated i n  (22) there i s  no way of applying a Kalman f i l t e r  t h a t  

does not contain the unknown parameters. However, i t  was found i n  

After preprocessing the test data  w i t h  a 

I t  is not obvious t h a t  the extended Kalman 

The simulated data  were preprocessed by a Graham 
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(22) that for the cases studied, a Kalman filter with considerable 

errors ir. the unknown parameters was usefxl in obtaining the non- 

measured flapping rates and accelerations. 

cation was then performed by the equation error method in its filter 

fom. 

The parameter identifi- 

In (29 )  the same method (except for using glc5al estimates) is 

used in an iterative form. 

quasilinearization is applied to the same and to more complex rotor 

identification problems. 

In addition, the c itput error method with 
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3. MATHEMATICAL MODELS OF THE FLAPPING RESPONSE 

OF A HINGELESS ROTOR 

3.1 SINGLE BLADE MODEL 

Using the simplest ana ly t i ca l  model of a l i f t i n g  ro tor ,  a 

s t r a i g h t  blade f lapping about the rotor center ,  one has i n  a ro t a t ing  

framt: of reference for the flapping mglc  8 the following equation (15). 

One rotor revolution corresponds to t = 2a. 

flow ef fec ts ,  zero root cut-out and with t i p  lo s s  f a c t o r  B, t he  

functions C ( t ) ,  K(t), %(t), mA( t )  in terms of rotor advance 

ratic p are (15): 

For neglected ntversed 

In the numerical analysis ,  we use B = 0.97. A simple improve- 

ment of t h i s  ana ly t ica l  model t h a t  takes i n t o  account blade bending 

f l e x i b i l i t y  is possible  (30). In  t rans ien t  conditions, t he  inflow 

h includes t h e  dynamic ro to r  wake i n  a complicated form. 

As a f i r s t  approximation of dynamic ro tor  wake e f f e c t s  one can 

use i n  equation 52, instead of the ac tua l  blade Lock number, an 



equivalent smaller value of y 

Such an approximation can be expected t o  be s a t i s f a c t o r y  i f  the  

transient is r e l a t i v e l y  slow. 

contents, t h i s  approximation is i nva l id  (11). 

t h a t  y*/y can be exprtssed by 

as suggested i n  ( 8 )  and (13). 

For t r ans i en t s  with high frequency 

In (11) i t  is seen 

y*/y = 1 - 1/ (1  + 8v/aa + 16K1io/aa) (57) 

The p a r m e t e r  v is  defined i n  equation 70. 

The above formulation is based on s ingle  harmonic balance 

of the  r o t o r  root moment equation. The y* formulation reduces 

t o  the  one obtained by momentum t h e o v  (9) (equation 58), when the  
- -  

phase var ia t ion  is neglected and v = p ( i . e . ,  when A = \r = 0 )  a 

Due t o  r o t o r  induced cross flow i n  a wind tunnel, t he  inflow 

parameter X w i l l  usual ly  not be well known. In addi t ion,  t he  

aerodynamic p i t ch  angle 8, 

inaccuracies and p i t ch  s e t t i n g  e r ro r s .  

considered here, we assume X = 0 

number y* 

flapping measurements. 

input 8b assumed t o  be known. The problem then is t o  determine 

from blade flapping t r ans i en t s  caused by blade p i t ch  inputs ,  t he  

equivalent Lock number y* and the  equivalent co l l ec t ive  p i tch  

s e t t i n g  8,. 

is  a l s o  not well known due t o  a i r f o i l  

For the  wind tunnel tests 

and use t h e  equivalent Lock 

BS an unknown y r a m e t e r  t o  be determined from the  b!ade 

In addi t ion w e  have a t r ans i en t  blade p i tch  

In order  t o  obtain a more r e a l i s t i c  descr ipt ion of the  r o t o r  

dynamic inflow, it is necessary t o  formulate the ro tor  theory in  
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multiblade coordinates, as is  done i n  the  following sect ion.  

i den t i f i ca t ion  of y* is a l s o  poss ib le  with multiblade coordinates 

and has, for experimental data ,  t he  advantage t h a t  the  measurements 

of a l l  t he  blades are used, and hence, an averaging e f f e c t  r e su l t s .  

The 

In fact, after it was found out t h a t  t he  blade p i t c h  angles d i f f e red  

for individual  blades by f rac t ions  of a degree, only multiblade 

measurements were used f o r  t he  y* i den t i f i ca t ion .  

3.2 MULTIBLADE FLAPPING EQUATIONS WITH DYNAMIC ROTOR WAKE 

It has been noted ( lo) ,  t h a t  for most purposes i t  would appear 

adequate t o  consider t he  first ro t a t ing  mode elastic bending e f f ec t s .  

The soment balance of a l l  the  flapping forces  on a r o t o r  blade 

about :he hub is given by (see (10) ) : 

ma = /UTx dx 

"'e * / U T 2  x dx 

1 
t) UT x n dx 

C = j U T  x n dx 

Here the  ac tua l  first ro t a t ing  mode n(x) is replaced by the  closed 

form expression (see (10) ) : 

rl = x + ~Csinh(3.93~)/2 sinh 3.93 + sin(3.93~)/2 s i n  9.931 

(61) 
~t. = 0 w i l l  correspond t o  a r i g i d  blade mode. 

Since t h e  dynamic r o t o r  inflow t h a t  couples the  motions or  the 

various blades is included, a milltiblade representation i s  necessary. 

The r e l a t ion  between s ingle  blade and multiblade var iab les  f o r  a 

4-bladed ro to r  is: 
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Ewe flapefng angle: 

= (1/4) 

Blade pitch a n g  

Induced flow: 

- .  

1 

2 cos t -2 s in  - -2 cos t 2 

2 sin t 2 cos t -2 s in  t -2 

1 -1 1 -1 - 
= 8, - 8 1  s i n  t 811 cos Jlc 

The variable Bd represents  d i f f e r e n t i a l  coning f o r  the 4-bladed 

rotor, whereby one p a i r  of opposing blades cones up, the other  p a i r  

cones down. 

the  radius  is defined i n  equation 63, t h i s  assumption is  not required 

for the  parameter i den t i f i ca t ion  process. 

butions merely produce d i f f e ren t  values i n  the  iden t i f i ed  parameters 

but do not change the  form of the  equations. 

3.2.1 

Though a l i n e a r  d i s t r ibu t ion  of  t he  induced flow over 

Different  inflow d i s t r i -  

Flapping Equations without Reverse Flow 

For low advance r a t i o s  the  region of reverse flow is small. 

Since this region is concentrated near  the  hub of the  rotor, t he  

reverse flow affects the  moment balance, and hence the  flapping 

response, very s l igh t ly .  Hence, f o r  low advance r a t i o s  (generally 

acceptable f o r  vas .4) t he  flapping equations a r e  g rea t ly  s impl i f ied  

by neglect ing the  reverse flow e f f e c t s  without an appreciable e r r o r  

i n  the  flapping response. 

Subs t i tu t ing  the  transformation equations 62 and 63 i n  the  

flapping equation 59, t he  multiblade representat ion of the flapping 

response is obtained. The limits of the  in t eg ra l s  i n  equation 60 a r e  

from zero t o  B t o  take i n t o  account t he  t i p  loss  fac tor .  
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The closed form f i r s t  mode expression 6 1  is subs t i tu ted  i n  equations 

60 which, in t u rn  are introduced i n t o  the  multiblade flapping 

equations. After some a lgebra ic  manipulation, the  flapping equatione 

are obtained as follows: 

3 - (B yp/6)(sin 2t  id + COS 2 t  Bd) 

2 2 + (.268)u s i n  4 t  BI + (.268)p (1 - cos 4t)B1, 

+ ( . 028)~  s i n  2 t  id - ( . 8 8 6 ) ~  cos 2t 0,) 

4 2 2  2 2  
= (B y/8 + B yu /16)gII + (B yu /16)(sin 4t  eI - COS 4t eII) ( 6 5 )  
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4 4 .. 
BII + (B y/8)kII + ( ~ f  - l ) B I I  + (B y/8)(-SI + X I I )  

3 2 2  - 2 8 ,  + (B ye/6)ko + (B YU / l b ) B I  + (B2yd4)Xb 

- (B yp /16)(cos 4t  BI+ s i n  4t BII) - (B yv/6)(sin 2 t  Bd - cos 2t  id) 2 2  3 

2 2 
(1 - cos 4t)B1 - ( .268)~1 + (.268)p s in  4t B,, 

- (.028)p cos 2t  id - ( . 8 8 6 ) ~  sin 2t Bd) 

. 2 + (.014)p COS 2 t  (BI1 - B i )  + (.535)11 s i n  2 t  Bo 

+ ( . 4 4 3 ) p  cos 2 t  BI + (.443)11 sin 2 t  B,, - ( .028)id) 

2 2  3 = (B yp /8)cos 2t  eo - (B yv/6)(cos 2t e l  + 2 t  el+ 
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3.2.2 Inflow Model 

We adopt here the  r o t o r  inflow perturbation model of  (9) and 

(11). 

dynamic r o t o r  t h r u s t  and moment coe f f i c i en t s  and t h e  perturbation 

inflow s ta te  var iables .  

notation, reads 

The inflow model i s  based on the  r e l a t i o n  between the aero- 

Equation 33 of  (ll),  wri t ten i n  our 

0 

+I 
1 

0 

aa 

Rotor t h r u s t  and moment coe f f i c i en t s  

contributions only. i s  the empirical L-matrix defined i n  (9). 

CT, G9 CL a r e  from aercidynamic 

The theo re t i ca l  values of kM, k and kI , using po ten t i a l  flow 
I1 2 

around a so l id  disk are given i n  (9) as 

The components of  the L-matrix as well as 

iden t i f i ed  from r o t o r  t r ans i en t  t e s t s .  From momentum theory, one 

kM = .549, kI = k = .113. 
1 I2 

kM, kI1 and k I  w i l l  be 
2 

obtains according t o  (11): 

0 
1 

ELI = aa 

with 

where x and y a r e  the t r i m  values, about which the  r o t o r  inflow 

perturbations vo, v I ,  v I I  are taken. 
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-1 The complete 4 
of 9 parameters as follows: 

matrix can be defined as a matrix consisting 

-l = A  
LE au 

The thrust and moment coefficients CT, C and CL dre obtained 

as a function of the state variables, the details of which is given 

in 8.2 .  

M 

To match the perturbation inflow model (equation 6 8 ) ,  where the 

inflow variables vOs v and v are considered as perturbations 

about its trim values To$ v and T 

to be perturbations about certain trim inputs. Since the flapping 

equations 64, 65, 66 and 67 are linear equationsand ei;=de C+ %; 
C in  e q u a t i m  72 t o  74 are linearly related to the s ta te  variables 

( see section 8.2 1, the s t a t e  variables in equations 64 to 67 and 

in equations 72 t o  74 can be considered aa pertnrbztfon variables. 

I' I1 

I 
- the flapping equations have 

11' 

L 
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X QQW are Iden t i ca l  with the  induced downwaeh variablar lo' I1 
- 

= vII' V0' VI' II. Hence, Xo - vo; XI = vI and XII 

3.2.3 Flapping Equations with Reverse Flow 

With increasing advance r a t i o ,  :he region of reverse  flow becomos 

l a rge r  and i t s  effects can no longer be neglected. The l i m i t s  of t he  

in t eg ra l s  i n  equation 60 are no longer simply from 0 t o  B, 

are sp l i t  up depending on whether the  flow i n  the  region is  normal, 

but 

B mixed o r  reversed. 

Region 1: f +l 
Region 3:  [ -LI sin$ 

JpBaiQ+ - 1 J 
B 

Region 3: - 1 
The three  regions are c l e a r l y  explained i n  (15). To obtain 

a closed form ana ly t i ca l  so lu t ion  f o r  the  coef f ic ien ts  of a l l  the 

states i n  the  flapping equations (and i n  the  th rus t  and moment 

coe f f i c i en t s ) ,  a f o u r i e r  expansion is  obtained f o r  a l l  the  coe f f i c i en t s  

around the  azimuth. 

f o r  d i f f e r e n t  advance r a t i o s .  

as well as the  th rus t  and moment cac f f i c i en t s  a r e  obtained i n  a manner 

This gives rise t o  d i f f e r e n t  sets of Coeff ic ients  

The flapping per turbat ion equations 

similar t o  those obtained by neglecting reverse flow. The blade is 

assumed t o  be r i g i d  (i.e. K is  assumed t o  be zero). The coe f f i c i en t s  

a r e  provided i n  8.4. 

3.3 EXCITATION OF PITCH STIRRING TRANSIENTS 

The flapping equations a r e  l i s t e d  i n  8.3. 

For wind tunnel experiments w i t h  p i tch  stirring t r ans i en t s  the  

i n i t i a l  s t a t e  of t he  r o t o r  w i l l  be given by prescr ibing the  advance 



50 

ratio, the collective pitch angle, the rotor angle of attack and 

the cyclic control setting that will be zero longitudinal cyclic and 

1.5' lateral cyclic. 

The lifting rotor wind tunnel model described in (31) allows 

excitation of progressing and regressing flapping modes at various 

frequencies. 

or regressing transients can be excited. 

By a minor modification of this model, progressing 

One can describe such inputs 

as pitch stirring transients. In a helicopter, this would mount 

to cyclic stick stirring, whereby the amplitude of the cyclic pitch 

would remain constant while .'.he frequency of the stirring motion 

changes. At the time to, pitch stirring is initiated. If we 

denote the angular pitch stirring speed as w, positive in the 

direction of rotor rotation, and the pitch stirring angular acceler- 

ation as G, assumed to be constant, we have 

For a progressing mode w is negative and for a regressing 

mode w is positive. In a rotating reference system the blade pitch 

angle is given by 

€3 = 8, t 1.5  cos Cu(t-to) + t l  

0 for t 5 to 

a t  - t o )  for t > to 

In a multiblade representation the blade pitch angle of the kth 

blade is 

k 
Q~ = 8 - 8 sin JI + 8 COS 6 

0 1  k I1 
(77) 
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where 
01 = 

0 for t 4 to 

1.5 sin o(t-t,) for t > to I 
1 .5  for t 4 to 

for t > to 
011 = 

1.5  cos w ( t - t , )  

(79) 

The meaning of these input equations is the following. At the 

time t = 0, a step lateral cyclic pitch input of 1.5 degrees is imposed. 

At time t = t , 

stabilized. At this time the pitch stirring acceleration of w is 

the response to this input is approximately 
0 

introduced which leads to a progressing flapping excitation. The 

identification starts at t = with the pitch stirring transient. 

represents forward cyclic pitch, B I I  represents left cyclic 

pitch. If perturbation equations are considered, the perturbation 

at time to is zero, BI  excitation stays the same but 011 excitation 

is now defined as: 

0 for t 6 to 

The wind tunnel experiments are conducted with a variety of pitch 

stirring accelerations. 

conducted with a pitch stirring acceleration of 

Generally, the computer experiments are 

w = -.l/W 

which is in the progressing sense. 
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Since in the non-dimensional time units used here the time of 

one rotor revolution is 2n, the angular pitch stirring velocity one 

rotor revolution after initiation of pitch stirring is .2 ,  that is 

one fifth of the rotor angular speed. 

of the blade pitch for about two rotor revolutions 

Figure 5 shows the t i w e  history 

(to = 0, t = 0 

to 12) in a rotating frame of reference for w =- . l / a ,  corresponding 

to equation 76. 

multiblade representation, that is BI and QII vs. time t for the 

same acceleration corresponding to equations 78 and 80. Figures 5 

and 6 refer to the progressing mode. 

regressing modes are less suited for rotor wake identification is the 

fact that at a certain regressive excitation frequency the excitation 

is in resonance with the regressing flapping mode. A t  this condition 

no induced dynamic rotor wake 

and aerodynamic damping cancel each other. 

transients include a frequency region with a weak dynamic rotor wake, 

the identification of the wake parameters is not cxpocted to  be as 

good as it is for progressing mode transients. 

Figure 6 shows the time history of blade pitch in 

The physical reason why 

exists since aerodynamic excitation 

Since regressing mode 



53 

2.0 

1.0 

0 

Q 

-1 .o 

-2.0 

0 4 t 8 

Figure 5.  
Reference for 

Tlme.Hietory of the Blade Pitch In a Rotating Frame of 
w -  I IT in Equation 76 .  

12 
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0 

-1 

0 4 t 8 12 

0 

-1 

11 0 

-2 

-3 

0 4 t 8 1 2  

Figure 6 .  The  History of t h e  Blade P i t c h  LI ani1 ti f o r  w - - . l / n  
i n  Equations 78 and 80. 1 J 1  



55 

4. SIMIJLAi'ION STUDIES 

4.1 SELECTION OF IDENTIFICATION E T H O D  BASED ON PRELIMINARY 

SIMULATION STUDIES 

The selection of the identification method used in this thesis is 

based on several simulation studies ( (S), (22) and (29) ). 

Simultaneous state and parameter idmtification in (32) and (33) 

was conducted using an extended Kalman filter. 

the method is that the filter can essily diverge unless good initial 

estimates are available. Particularly in (33) a considerable effort 

was applied to obtain such good initial estimates. 

was first processed with a digital filter that took out high frequency 

noise without distorting the main signals. 

with a Kalman filter based on the Euler equations, which do not 

contain the unknown parameters. 

and missing cha qels were reconstituted. 

algorithm was applied to obtain estimates of the unknown parameters. 

The subsequent application of the extended Kalman filter led to 

modified parameter estimates, however it is i,.t clear whether or fiat 

these modifications represent improvements. In any case the modi- 

fications were not large, and the initial estimates appeared to be 

satisfactory approximations. 

A major drawback of 

The test data 

The data was then processed 

Thus aeasurement bias was removed 

Finally a least squares 

In trying to apply the experience from (33) to wind tunnel 

model transients a difficulty arises, in that there is no equivaient 

to the Euler equations for the ai. ,raft. Thus there is no way of 

using a Kalman filter which is free of the unknown parameters. 

Instead, if a Kalman filter is to be applied, estimates of the parameters 
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must be inserted. 

tests is that only flapping deflection measurements are made, while 

the rates of deflection and the accelerations are not measured. Thus 

the Kalman filter with the estimated parameters is called upon to 

provide both rates and accelerations. 

Another difficulty for our wind tunnel model 

This method as explained before has several disadvantages. 

A priori parameter covariances being generally unknown. give poor 

and most often, wrong parameter covariances as solution of the 

ficcati equation. Wrong estimates of the parameter values often 

cause the filter to diverge. 

Analysis is also made by replacing the least squares algorithm 

of (33) ,  by linear sequential estimators and a simpler ltglobal" 

estimator. This has the advantage that finite initial parameter 

covariances can be used, and that the time h i s t o r y  of t h c  parameter 

covariance provides a measure for the time beyond which no more useful 

information can be extracted from the t e s t  d a t a .  

The linear sequential estimator as sbown Seforc (iised :'n (22) ) 

requires the simultaneous integration of  t!lc f i ! t e r  and of the covariance 

differential equations. A simpler "global" estimstc requj res only the 

inversion of a system of linear equations f o r  t h e  unknown parameters 

and the evaluation of a number of integrals over the tjme period of 

the transient. Therefore, a number of comparison< were made between 

these two methods. 

For a single blade 2 parameter i d e n t i f i c a t i o n .  bo th  the linear 

sequential estimator and the "global" estimator p r o v i d e  ciui te 

accurate parameter estimates. For convcni:wct, .!rid 6 2 y Bo instead - 
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of y and 8, were identified. Preliminary analysis and comparison 

.between the Iterated Equation Error estimation with updated Kalman 

filter and the Maximum Likelihood method had given the following 

results: 

stirring transients the Equation Error method applied in an iterative 

form using a Kalman filter with the latest parameter updates worked 

well and required the least computer CPU time. 

parameter identification this method became impractical because of 

slow convergence and high computer CPU time. 

method worked well both for single blade and multiblade applications, 

though in case of single blade identification it requires somewhat 

more computer CPU time. The parameter covariances from the Maximum 

Likelihood method are clearly superior to and more meaningful than 

the covariances determined with the Equation Error method. 

Maximum Likelihood method also gave good parameter identifications 

in the presence of both measurement and system noise, though most of 

the computer experiments were conducted with measurement noise only. 

The following Table 2 compares the results of the various 

For single blade parameter identification from pitch 

For multiblade 

The Maximum Likelihood 

The 

methods 011 the single blade model (29). 

the Maximum Likelihood method. 

The last 4 rows refer to 

The number of iterations indicated in the table is that for 

which convergence has been achieved. 

estimation with updated Kalman filter needs the lowest tdtal computer 

effort, however, the accuracy of the estimate is worst for y. The 

Maximum L” elihood estimation, due to faster convergence, needs only 

moderately more computer effort and yields better accuracy. 

The Iterated Equation Error 
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During the last decade the Maximum Likelihiod method of para- 

meter identification has been successfully applied to nirplane and 

helicopter transient testing. 

preprocessing of the test data and also does not need complete 

measurements of the deflections, of their rates and of the accelerations. 

This method does not require 

The parameter covariance estimates obtained with this method are more 

meaningful than those obtained with the linear sequential estimator 

used in (22). 

From the above study, one can conclude that the Maximum Likelihood 

method in its simplified form in which system noise is not modeled, 

is, for the applications studied, superior to the Equation Error and 

other existing methods and thus will represent the method of choice 

for the parameter identification from wind tunnel rotor model tests. 

4.2 SIMULATION STUDIES FOR FORWARD FLIGHT USING MAXIMUM LIKELIHOOD METHOD 

The Maximum :lielihood method for our particular case pertains to 

the system equation (zero system noise) 

x = f(x, u, e) 
. 

(82) 

0 is the vector of unknown parameters that may include initial values 

of the state variables, constant measurement bias, etc. The measure- 

ment equation is assumed to be linear and of the form 

y = H x + v  (83 1 

y is the vector of observed quantities, H is a matrix relating the 

state variables to the observations, v is the vector of random 

measurement errors, assumed to be zero mean white noise with given 

covariance matrix R 

R is assumed to be constant with time. Though the preceding 
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equations do not show bias terms, bias errors could easily be included 

in the unknown parameter vector e. 

A sample of measurements y1 y2 . . . yn is now made during the 
A 

time of the transient and the parameter estimate is selected such 

that the conditional probability of this sample of measurements given 

8 is maximized. 

0 

I 

0 = max p(y ,  yn/e) 
e 

The following steps lead to the maximum of the likelihood function 

p(yl . . . yn/O), though there is no assurance that the maximum is 

global. 

the modified Newton-Raphson method. 

of the random variables. 

The method outlined here is called quasilinearization with 

It assumes Gaussian distributions 

A 

1. Select an initial parameter estimate 

2. Solve the system equation 14 with this parmeter estimate 

8 = 8,. 

. A .. ,. 
x = f(x, u, 0) 

The initial conditions can either be obtained from the 

measurements, or, where t h i s  is not  fecsible, they can be 

included in the unknown parameter vector 
n 

0 .  

3. Calculate for each measurement the "innovation term" 

* j = y j - H x  j 
4. Solve the "sensitivity equations" 

I 

a %/ek = w a e ,  + F(t) a x/aek 

where 
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The i n i t i a l  conditions of ai/aCl, are zero except when 

x(0) is iden t i f i ed  as p a r t  of t he  parameter vec tor  8 .  
A 

In t h i s  case the  i n i t i a l  p a r t i a l s  have the  value one. 

5. The l ikel ihood function f o r  zero system noise is 

_ -  
Determine now t h e  gradient  of  t h i s  funct ion with respect  

t o  e 

6 .  Compute the  information or  s e n s i t i v i t y  matrix 

The inverse K1 of the  information matrix provides a lower 

bound f o r  the  CLiariance of t he  updated parameter estimates. 

The updated parameter e s t i n a t e  is 7. 

n 

8 = 8 0 t A 8  (93 1 

8. Go now back t o  equation 86 with the  updated parameter 

es t imate  and repeat the s t eps  t o  equation 93 . Rei te ra te  

un t i l  convergence of the information matrix and of the  parameter 

vector i s  obtained. 
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The Maximum Likelihood method, which was used quite successfully 

in the single blade forward flight analysis and in multiblade hovering 

analysis (29) ,  was extended t o  the multiblade forward flight analysis 

with the time delayed rotor inflow L-matrix model as defined before. 

To study the question of L-matrix identification,simulation 

studies were performed for a hypothetical rotor witk 

characteristics of the model rotor treated in (91, so that the 

experimental dalues of the L-matrix determined ir! (9) could be 

used. 

and a blade flapping frequency of w1 

model rotor has a blade solidity ratio of .154 and is usually run 

with a rotor speed corres9onding to a blade flapping frequency of 

w1 = 1.17. 

helicopter. The dynamic rotor wake effects are ra ther  small at 

this rotor advance ratio. 

fication should be easier for lower advance ratios where the rotor 

wake has substantially larger effects. 

of L-matrix identification, the most unfavorable  cfi:~? of . 4  advance 

ratio was selected. 

the 

The rotor was assumed to have a blade solidity ratio of .lo0 

= 1.20. The experimental 

An advance ratio of . 4  is the upper limit for a conventional 

The dynamic rotor wake parameter identi- 

In order to study the feasibility 

The inflow model chosen is giveii by equat ion  68. The theoretical 

and K using potential flow arczmd a solid disc 
KI 1 1 2 '  

values of KM, 

are KM = .849 and K = K z.113. Choosing the values of 

' the parameters of the L, matrix from ( 4 )  a t  u = . d ,  the inflow model 
I1 I2  4 K I  

d 

is obtained as - 

V + 

GI I - :i 
- 
.5 0 0 

- 

(95 ,  
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Here the number 7.5 represents t h e  theo re t i ca l  value of the r a t i o  

$/KI. 

but not  $ and KI separately.  

t o  have s i x  unknown parmeters Q1to  Q6, so t h a t  the above equation 

95 is wri t ten i n  the  form 

We w i l l  assume t h i s  value as given and iden t i fy  only KM, 

The inflow model is  now assumed 

The flapping equations are the perturbation equations derived 

without reverse flowkquations 64, 65, 66 and 67). The system 

equations have the given parameters ab = 2 n / l O ,  IJ = 0.4, t i p  loss  

f ac to r  B = .97, and the flapping frequency w 1  = 1.20. The Lock 

number w i l l  be assumed given as 

and w i l l  be assumed an additional unknown i n  other  runs. 

y = 5.0 f o r  some iden t i f i ca t ion  runs 

The inflow equations represent a feedback system, whereby most 

of t he  unknown parameters occur i n  the feedbackloop. The feed- 

back s ignal ,  v,  is unknown. The only measured quan t i t i e s  are % 

81,  Q I I ,  Bo, 81, 811, and 8d' 

unknown. 

The four other s t a t e  var iables  are a l s o  

The iden t i f i ca t ion  problem thus has seven unknown parameters 

i r  f is  included, four unknown s t a t e  variables and three unknown 

feedback variables.  

constant. 

One of the unknown parameters ( e , )  is a time 

The following s tud ie s  were made using the above inflow model 

(equation 95) 

a) The angular acceleration of the pi tch s t i r r i n g  sha f t  was 

considered t o  be & = - . l / n .  The time of t r ans i en t  measure- 

ment is  t = 0 t 3  12  time u n i t s ,  the r m p l i n g  r a t e  
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At * 0.1 and t h e  standard deviation of  rhe measurement noise 

uv- .OS. The average least squares fit a* ( f i t )  is a l s o  

noted, t o  determine the accuracy of  the iden t i f i ed  f i t  (Table 3) .  

Prom the  above i d e n t i f i c a t i o n  .m it is  seen t h a t  

though most of the  parameters converge, the accuracy of 

the  estimates vary. The diagonal terms €I1, O2 and 05 of 

the L matrix converge t o  more accurate parameter estimates 

than the  off-diagonal terms e3 and e4. Y 4 Q7 is very 

sens i t i ve  t o  the response and hence converges faster and 

accurately to  t h e  t r u e  value. 

(b) A p r i o r i  knowledge of the parameter estimates is added t o  

the l ikelihood function a s  a quadratic term involving t h e  

weighted difference between the estimated parameter values 

and t h e  p r i o r i  parameter values, i . e . ,  

(ii - eo)T A (iii - eo) (97) 

where A is t h e  weighting matrix. The iden t i f i ca t ion  runs 

were under the same conditions as i n  ( a ) .  TKO pitch s t i r r i n g  

accelerations of -.05/n and -.l/m a re  studied. The weighting 

matrix A was taken t o  be 2001. The Lock number,  y,which can 

be determinedquite accurately,  i s  assumed t o  be  known a t  ~ ~ 5 . 0 .  

The main point of  i n t e r e s t  i n  Tables 4a and 4b is  the 

improvement i n  accuracy of M - l  values for  t h e  d i f f e ren t  

parameters from d, = - . 0 5 / a  t o  & = -.l/n. The values i n  the 

l a t t e r  are about one-tenth t h e  corresponding values f o r  t he  

M-' values obtained by using the slower acceleration. 

There does not seem t o  be any apprcciahlc change i n  

between the two cases i n  Tables 4a and 4b and Tab le  3. 

02( f i t )  
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A P r f d  wei@ting does not seem t o  have helped i n  obtaining 

better estimates o f  t he  ptmmeter values. 

mt8r6 Qs and Q6# the ident i f ied  values are much worse. The 

a<rcusracy of most of the  ident i f ied  parameters don't seem t o  

In cases uf para- 

be very good. 

(a) Anather study of interest is the  case where the  induced 

flow is repmsented by the  equivalent Lock number, y*. 

The simulated masurenaent data is obtained by using the f u l l  

tmatr ix  induced flow model i n  determining t h e  flapping 

-msponse. This response is polluted with zero mean, 

Gnussian white noise of u,, = .OS t o  obtain the measure- 

ment da ta  (as before). The ident i f ica t ion  r e su l t s  are 

given i n  Table 5. Other conditions are t h e  same as i n  

(a) and (b). 

The equivalent Lock number, y * ,  w a s  ident i f ied  and 

converges rapidly. 

shows the goodness of the  ident i f ied  value; but incomplete 

The W1 value obtained i s  low which 

modeling (i.e., lack of an inflow modol) gives rise t o  a 

u2(f i t )  

t ha t  obtained by using a complete inflow model i n  Table 4. 

value which is approximately twice as much as 

(d) In order to ident i fy  the elements of the  matrix 

d i r ec t ly  and a l so  t o  ident i fy  t h e  three mass and inertia 

terms separately, the inflow mods1 as given by equation 68 

is used ra ther  than the simplified equation 96. 
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Table 5. Equivalent Lock Number y* Identified f r o m  Data 
Generated f r o m  the Full L-matrix Induced Flow Model 
t = 0 - 12; A t  0 . 1 ; ~ ~  = -05; 0 = - . O ~ S .  

Value of v 

nit ial  Estimate 

teratim 1 

L 

3 

4 

Y* 
5.0 

~~ 

4.2 

3.863 

3.85 

3.849 

3.849 

.0013 

a2 (fit) 

.00636 

.00504 

-00504 

.00504 
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The ident i f ica t ion  program was run under the  same 

conditions as i n  (a) except t h a t  length of t h e  i den t i f i ed  

da ta  length is t = 0 to 18 instead of t = 0 tc 12. 

The increase i n  da ta  length was j u s t i f i e d  on account of 

the poor accuracy of the  ident i f ied  parametas  and t h e  

high values of the Cramer-Rao lower bounds f o r  the  

parameters. 

a later chapter on Wptimal Data Utilizatioii". 

r e su l t s  are tabulated i n  Table 6.  

This increase i n  data length was verified i n  

The 

Once again, the off-diagonal t e r n  o f  the   LE-^ matrix, 

show poor iden t i f i ab i l i t y .  The a 2 ( f i t )  .:?lue does not 

show noticeable change from the r e su l t s  i n  (a).  The improve- 

ment i n  the  Cramer-Rao lower bounds w i t h  ir.crease of t he  

da ta  length was expected. 

The simulated measured responses together  with the  

ident i f ied  responses a re  given i n  Figures 7 ,  8, 9 and 10. 

The perturbation ident i f ied  lilfiow i s  p l o t t e d  in  Figures 

11, 12 and 13. 
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Detailed analysis of the simulation studies for pitch 

stirring acceleration of & = .OS/a ,  -.l/n and .2/n 

are given in (34). 
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4.3 EIGENVALUE ANALYSIS 

The non-uniform downwash is s t rongly coupled t o  the  moment 

response of hingeless r o t o r s  ( 9 )  and (11). 

of t he  effect of t h e  unsteady downwash on t h e  r o t o r  t r a n s i e n t  response 

and also r o t o r  s t a b i l i t y .  

i n  t h e  i d e n t i f i c a t i o n  analysis  of  dynamic r o t o r  resFoiise i n  the  

previous chapter. 

of the  dynamic flapping response of a r o t o r  model. 

This led t o  the  study 

Study of r o t o r  t r ans i en t  response is  made 

S t a b i l i t y  s tud ie s  are made by eigenvalue analysis  

As mentioned before, it w a s  seen i n  (14) t h a t ,  i n  hovering, 

the damping of t h e  regressing flapping mode is subs t an t i a l ly  reduced 

by dynamic inflow effects a t  low co l l ec t ive  p i t ch  angle. In the  

following, r e s u l t s  o f  t he  forward f l i g h t  eigenvalue analyses are 

presented using d i f f e r e n t  ana ly t i ca l  models. 

A de ta i l ed  study was conducted using the forward f l i g h t  model 

given by equations 64, 65, 66 and 67. 

model given by equation 68 is obtained from Figure 4 o f  (9).  

important aspects of t h i s  analysis  are:  

The parameters of t h e  inflow 

Several 

The eigenvalue analysis  is  f i r s t  conducted a t  u = 0.4  using 

a complete flapping t r ans i en t  model (including the feedback downwash 

model) with and without the per iodic  terms. 

eigenvalues is given i n  Table 7 . 
with t h e  above are the eigenvalues obtained by neglecting t h e  down- 

wash i n  the constant model. 

are obtained d i r e c t l y  by taking the  Laplace trsxfcjr-m of t h e  system 

equation and then solving f o r  the roots of the c h s r a c t e r i s t i c  equation. 

The per iodic  system equations on the other  hand, have t o  bc solved by 

The comparison of t h e  

Another i n t e re s t ing  comparison 

For the  c m s t a n t  system, the eigenvalues 
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Floquet theory as outl ined i n  (35). According t o  the  Floquet theory, 

t he  imaginary p a r t s  o f t h e  eigenvalues a re  indeterminate and i n  t h e i r  

multiples of one can be added or subtracted.  

From Table 7 one can see t h a t  t h e  e r r o r  i n  represent ing the  

per iodic  system by a constant system (obtained by neglect ing the  periodic 

terms) is small, and therefore, the  constant system ie in our case, an 

accurate representat ion f o r  the  set o f  parameters used. 

i n  the  eigenvalues i n  the  above comparison are a l l  within 2%. 

cont ras t ,  t he  f lapping model without t h e  dynamic inflow model is 

s ign i f i can t ly  i n  e r ro r .  

t he  regressing mode (fourth row of Table 7) by 40%. 

The error 

In 

The dymmic inflow reduces t h e  damping of 

The s e n s i t i v i t y  of the  eigenvalues with var ia t ion  i n  parameter 

values was a l so  s tudied for t he  constant model. 

seem to  be in sens i t i ve  t o  changes i n  values of the  L-matrix parameters 

i n  the  downwash model. Variation i n  value of the Lock number y 

caused the  real p a r t  o f  t h e  eigenvalues t o  move c lose r  t o  the  imaginary 

ax is  with decrease i n  the value of  y. 

The flapping eigenvalues 

The s e n s i t i v i t y  of  the  eigenvalues t o  the  parameters y (Lock 

number) and w12 (blade natural  frequency) i s  determined. The model 

chosen was the  constant system without downwash. Change i n  w12 only 

changes the  frequency component of t h e  eigenvalues. 

of the  eigenvalue s tays  steady a t  A/2 ( i . e . ,  approximately 

8 shows the  d e t a i l s .  

The real p a r t  

y/16). Table 
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Table 7. Comparison of the Eigenvalues Between the  Three Different 
Forward Flight Models of the Flapping Response. 

Eigenvalues at )J = 0.4 (y = 5.0; u12 = 1 . 4 )  

Periodic System 
~ 

-0.256kO. 137 j 

-0.245kO. 131j 

-0.275k1.162 j 

-0.2OOk0.19Oj 

-0.681+0. Oj 

-1.299+0.0j 

-1.682+0. O j  

Constant System 
with Downwash 

-0.253k2.134j 

-0.246+1.130j 

-0.277+1.168j 

-0.201kO. 194j 

-0.682+0. O j  

- 1.316+0. Oj 
- 1.66S+O. Oj 

Constant System 
without Downwash 

-0.27422.16j 

- 0 . 2 7 6 ~ 1 . 1 G l J  

-0.27751.168j 

-0.280+@. 167j 
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The variation i n  the eigenvalues from hover t o  an advance ratio 

of y = 0.4 is given i n  Table 9. The constant system model with 

the complete downwash model is used. 

are those at II = 0.4, and given i n  equation 95. 

the dynamic inflars parameters do not change much between v = 0 and 

y = .4. 

The parameter values used 

According to (9) 

Surprisingly, there  is negl igible  change i n  the eigenvalues 

w i t h  change i n  advance ra t io .  

i f  the changes of +he inflow parameter values with change i n  advance 

r a t i o  were taken i n t o  account. 

The var ia t ion ray  be more pnmounced 

A t  higher advance r a t i o  the  effect of reverse flow and periodic 

term becomes important. 

three cases is made as shown i n  Table 10 fcr p = 0 . 8 .  

are compared f o r  the  following three models: 

To study t h i s  e f f ec t  a comparison between 

Eigenvalues 

(1) A ro tor  model with the periodic terms, reverse flow 

effects and the  coaplete inflow model 

The shove complete d e l  neglecting the reverse flow 

and periodic terms 

The model given i n  (1) with the downwash equations 

neglected. 

(2) 

(3) 

From Table 10 it is seen t h a t ,  neglecting t h e  reverse flow and 

periodic terms did not a f fec t  the flapping eigenvalues s ignif icant ly .  

The eigenvalues corresponding t o  t h e  downwash were changed greatly.  

A t  high advance r a t io ,  the  feedback due t o  t h e  dynamic inflow 

becomes relatively unimportant which is c lear ly  seen i n  Table 10. 
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Table 9. Sensitivity of the Eigenwalws to Vanation in Advance 
Ratio in a Constant Forward Flight Mathematical W e 1  
w i t h  Downarash. 

AdVanCe 
Ratio (v' 

0.0 

0.1 

0.2 

0.3 

0.4 

Constant System with Downwash 

-0.259k2.143j ; -0.277&1.l68j ; -0.257fl. 137 j ; 
-0.717+0j; -1.24S+Oj; -1.673+0j; -Om197*0.197j. 

-0.259k2.142j; -0.277f1.168j; -0.256f1.137j; 
-0.715+0j; -1.25Nj; -1.672+0j; -0.39&+0.1975 

-0.2Se2.14Oj; -0.271f1.168j; -0.254f1.136j; 
-0.708+0j; -1.264Mj; -f.671+0j; -Om198*0.196j. 

-0.256*2.138j ; - 0.277kl. 168j ; -0.251kl. 133j ; 
-0.697+0 j ; -1.286+05 ; -1.669+Oj ; -0.19920.196j. 

-0.25S2.134j; -0.277&1.168j; -0.24621.130j; 
-0.682+0 j ; - 1.316+0 j ; -1.665+0j ; -0.201tO. 1943. 
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Table 10. Comsparisaa of the Eigenvalues Beaqeen the Three Different 
Forward .. Plight W l s  at High AdJmce Ratio 111 = 0.8; 

1.4; y = 3.2). 

bdel (2) I Model (1) 

-. 181k2.143j 
-.187*1.126j 

-.187*1.147j 

-.176iO.l90j 

- .580+0j 
-2.4SlkO. lSlj 

-. 16722.143j 
-.174+1.147j 

-. 177A1.166 j 
-.180+0.175j 

- .268+0 j 

-S.l48+Oj 

-17.937+0j 

Model (3) 

- .187f2.148 j 
-.18721.lSlj 

- .187*1. lSlj 
- .187?0.154 j 
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4.4 OPTIKAL DATA UTILIZATION FOR PARAMETER IDENTIPICATION PROBLEMS 

WITH APPLICATION TO LIFTING ROTORS 

In aircraft or wind tunnel t ransient  t e s i i a g  the question comes 

up as t o  what kind of t rans ien t  should be selected.  

is too short ,  the  parameters w i l l  be ident i f ied  with inadequate 

accuracy. 

data  ruust be processed. 

Likelihood method is - given a required accuracy of the parameter 

estimate, and given an input function, what is the  minimal quantity 

of measured data  necessary t o  achieve t h i s  accuracy? There a re  some 

recent s tudies  where cer ta in  c r i t e r i a  w e r e  used t o  define an optimum 

input. 

proposals, and then proceed t o  develop the method of optimal data  

u t i l i za t ion  for  a given type of input. 

4.4.1 

If the transient 

If the  t rans ien t  is too long, an unnecessary amount of 

The question w e  pose here for the Maximum 

We w i l l  first b r i e f ly  discuss two of these optimal input 

Two Proposals for  O p t i m a l  Input Design 

General questions uf input design are: 

(a) 

(b) 

What type of input function should be used? 

For what time period should the response data be processed 

t o  enable ident i f ica t ion  of the system parameters with 

a specified accuracy? Are cer ta in  time periods of the  

response par t icu lar ly  r ich i n  information contents and 

should they, therefore,  be preferably used? 

There usually a re  some constraints  on the input design l i k e  amplitude 

constraints ,  smoothness constraints  (step o r  impulse inputs a re  

mathematical ideal izat ions but often prac t ica l ly  not real izable) ,  



88 

instrumentation castraints, and cons t ra in ts  imposed by the  selected 

analytical model t h a t  usual ly  f i l t e r s  out t he  higher  frequency 

contents of the input .  

Analytical so lu t ions  of the problem of optimal input design 

require  the  minimization of a cos t  function. Stepner and Mehra 

(1) use the s e n s i t i v i t y  of the  system response t o  the  unknown 

parameters as t he  performance c r i t e r i o n  f o r  optimal input design. 

The time of t he  t r ans i en t  is assumed t o  be fixed. Thus questions 

(b) are not involved. The measurement equation is 

Y p  = y(x,  8 ,  u, t) + v ( t )  (99) 

We write the  Taylor expansion with respect t o  the parameter Q about 

t he  a p r i o r i  es t imate  0, of 0 and neglect higher order terms: 

In the  output e r r o r  method 

squares so lu t ion  of equation 100 f o r  a f ixed time period 

For a high degree of accuracy in determining 

t i v i t y  function ay/aO must be large.  The s c a l a r  performance index 

(Q - €1~1 is determined by a l ea s t  

(tG, t f ) .  

(e - €lo) t h e  sensi-  

selected i n  (1) i s  

J = Trace (WM) (101) 

where 

L 
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Due t o  the  introduct ion of R-' i n  M, t he  performance c r i t e r i o n  

favors the  measurements which are more accurate. The weighting 

matrix W is based on the  r e l a t i v e  importance of  t he  parameter 

accuracies. 

If we assume l i n e a r  system and measurement equations 

x ( t )  = F x( t )  + G u ( t )  

v ( t )  YJ t )  = H x( t )  + 

together  with an "energy constraint** for t h e  input  

E =  

the  optimum input  u 

value problem whereby 

i' t 0  

uT u d t  

can be determined as a two point  boundary 

the Hamiltonian includes the  term 

The s c a l a r  uo is the  time invar ian t  Lagrange f a c t o r  t o  be evaluated 

from the  Euler d i f f e r e n t i a l  equations of t he  optimization problem. 

I t  should be noted t h a t  t he  *I energy constraint"  equation 105 has 

no physical s ign i f icance  but is a convenient device t o  obtain smooth 

input functions. Physically, t he  input w i l l  usually be l imited 

by amplitude r a the r  than by the  quadrat ic  c r i t e r i o n  (equation 105) 

and qu i t e  d i f f e r e n t  **optimal** inputs can then be expected. 

(36) attacks the  problem of optimal input design i n  an e n t i r e l y  

d i f f e ren t  way as a time-optimal control problem by minimizing 

J =  f d t  

t 0  
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Information matrix equat ions  

where u is t h e  innovation: 

and where the information matrix M is  given by equation 102. 

Finally,  Chen assumes an amplitude constraint  

and he prescribes the t r a c e  of t h e  information matrix fo r  time tf 

2 Cii(tf) = 

One can show t h a t  for  l i n e a r  input 

and f o r  an input matrix independent o f  any unknown parameter, t h e  

optimal input i s  of t h e  “bang-bang” form between thc amplitude’ 

constraints .  The solution of t h i s  problem requires a compiiter 

search which was not performed (36). Rather, an a r b i t r a r y  s e t  

of bang-bang 

u ( t )  i n t o  the system equation 

inputs i n  t h e  form o f  Walsh functions was shown t o  
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r e s u l t  i n  a s p e c i f i c  case i n  lower values of  M-l(tf) 

than those obtained by using Mehra's "optimal input". 

contradiction can be explained by the  d i f f e r e n t i a l  equation 110 

governing b4-l. For a p a r t i c u l a r  value of  M'l t he  rate of  decrease 

of M - l  

(given tf) 

This apparent 

with time is dependent on - a l l  elements of  

while Mehra, i n  h i s  c r i t e r i o n  (equation 101) optimizes only the trace 

o f  WM. 

While the input amplitude constraint  (equation 112) used by 

Chen is physically more s ign i f i can t  than t h e  quadratic constraint  

(equation 105) used by Mehra, the ac tua l  constraints  are usually 

still  more complex. I n  cases o f  a i rplanes o r  l i f t i n g  ro to r s  one 

usually wishes t o  l i m i t  t h e  response t o  the  l i n e a r  sub-stal l  

regime, s ince the ana ly t i ca l  model t o  be iden t i f i ed  is of ten a 

l i n e a r  one. 

input and cannot be represented by an amplitude constraint  f o r  the 

input t r ans i en t .  This is p a r t i c u l a r l y  relevant f o r  the l i f t i n g  

rotor ,  so t h a t  ne i the r  the Mehra nor the Chen input optimization 

cr i ter ia  is  useful f o r  l i f t i n g  r o t o r  applications,  q u i t e  apar t  from 

the excessive computer e f f o r t  involved i n  obtaining the optimal inputs.  

Furthermore, the input matrix usually contains unknown parameters. 

In t h i s  case,Chen's optimum solut ion would not be of t h e  bang-bang 

type and would be st i l l  more d i f f i c u l t  t o  obtain. For a l l  of these 

reasons i t  was concluded t h a t  a t  the present s t a t e  o f  optimal input 

design methods an attempt t o  compare our selected inputs w i t h  an 

The s ta l l  boundary is ,  however, a complex function of t he  
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"optimum input" wculd not be p rac t i ca l .  

approach has been taken described i n  the following sect ion.  

4.4.2 Optimal Data Ut i l i za t ion  f o r  given Input Function 

Instead, a more l imited 

We first point  out the  difference between the continuous and 

the d i sc re t e  case. 

for zero process noise) using the  Newton-Raphson approach with quasi- 

l inear iza t ion ,  one obtains f a r  thc parmeter  update increment the  

following expressions : 

Continuous case : 

In the  Maximum Likelihood (output e r r o r  method 

Discrete case: 

- ,4-1 ( 2 'J ) - - a e  

The Cramer-Rao lower bound has been defined only for a vector of  

sampled measurements and not f o r  t h e  continuous case ( 2 )  and (18). 

For high sampling r a t e ,  one can define an approximate d i f f e r e n t i a l  

equation for M from equation. 115 i n  the following way: 
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A s - N  increasesht gets smaller and the right hand side of 

equation 117 can be approximated by 

ST Rol S dt if M J (l/At) 

Taking the derivative of M-1 with respect to tf: 

or with equation 118 

-1 -1 ST R-l d M  / d t f  = - ( l / A t ) M  (120) 

The point is that even in a continuous formulation the time increment 

At between samplings must occur. Equation 119 is the correct formu- 

lation for the Cramer-Rao lower bound of the covariance matrix for the para- 

meters. (36) has a recursive formulation corresponding to equation 120. 

We can now use the approximately valid differential equation 120 

to obtain some insight into ways of best data utilization. 

assume that we wish to prescribe certain values for the parameter 

standard deviations ai 

lower bound with these standard deviations. 

not with the unknown actual parameter covariances but only w i t h  t h e i r  

lower bounds, we should apply some conservatism to the selected ui, 

Let us 

and that we wish to compare the Cramer-Rao 

Since we are deal ing  
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t h a t  is we should select 

specific da ta  processing case. 

ui smaller than we really need for the 

We thus require 

.- -. .. -. 

whereby qi is the value of M'l a t  time tf .  For non-zero 

values of S, the  r igh t  hand s i d e  of equation 120 i s  negative 

d e f i n i t e  and hence M - l  ( i ,  i) a re  monotonically decreasing 

functions of tf. 

constraints  of equation 1 2 1  a r e  s a t i s f i e d .  

t f 
There w i l l ,  thus,  be a ininimwn time f o r  which the 

Another way of reducing the amount of measured data f o r  t h e  

parameter i den t i f i ca t ion  is t o  s e l e c t  f o r  the data processing those 

time periods f o r  which the components of the matrix 

have s ign i f i can t  values. I t  follow:; from equation 119 t h a t  t h e  

Cramer-Rao lower bound M - l  then w i l l  b: par t i cu la r ly  small. The 

components of M - l  also decreasc w i t h  decreasing time elcmc-nt 

A t  between samples. 

Since it  i s  impractical t o  use for  t h e  integration o f  uquation 120 

i n f i n i t y  as i n i t i a l  condition, i t  i s  recommended t o  determine 

f o r  a small time period, say f o r  N .- 10, from equat ion  119 2nd 

integrate equation 120 with t h e  so lu t io r ;  to cquation 119 3s i n i t i a l  

conditions. Since S includes paraectcr estimates, one necds a 

preliminary estimation of the unknown yarmetcrs i n  o r d e r  t o  use 

equation 120. 

M - l  
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4.4.3 Application to a Case of Lifting Rotor Parameter Identification 

The simplest mathematical model of the single blade flapping 

equation as expressed in equation 52 is used to identify the two 

unknown parameters: the collective pitch angle 8, and the 

equivalent Lock number y .  The angular acceleration, in the pitch 

stirring transient, is assumed to be I = .l/n and to = 12. 

Here we are concerned with the problem of designing the tests 

in such a way that the test data will be sufficient to determine 

the two unknown p.irametsrs y and 8, with good accuracy, i.e., 

to determine a suitable value of T that allows an accurate identi- 

fication of parameters. 

The simulated identification analysis was performed under the 

assumption of a random zero mean white noise sequence superimposed 

on the analytical flapping transient. 

8, = 2*,  

6 = yeo and y instead of 8, and y were identified. 

This transient was obtained for 

II = 0.4 and y = 5.0.  For convenience, the parameters 

System and measurement equations corresponding t o  equations 103 

and 104 are: 

where 

E { v ( t ) )  = 0 

and Cx, x 2 ’  = cs bl 
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We firs t  sh-* i n  Table 11 the effect of data length on the 

parameters and t h e i r  associated Mel (i, i) values. The i t e r a t i o n  

of the Maximum Likelhood IBethod was begun with a 20 percent error 

in the parameter values. t = 12 

- 14 is qu i t e  inadequate, a da ta  length of  t = 12 - 18 gives 

reasonably good parameters, uh i l e  a da ta  length of 

is much b e t t e r  and lea& t o  a very smali lover bo-snds of the  parameter 

covariance matrix. 

I t  is  seen t h a t  a data  length of 

t = 1 2  - 24 

Figure 14 shoss the correct  flapping response 

together with the simulated measurement data.  

i n i t i a t e d  a t  t = 12. Figures 15 and 16 show M-l(yj and M-l(tS) 

from equation 120 between t = 16 and t = 21. Two curves a r e  p l c t t ed ,  

one for the i n i t i a l  crude estimat2 of the parameters 

and one for the  f i n a l  estimate of the parameters for  

4.91, 6 = 9.83). The two curves are  i n  this case not much d i f f e ren t .  

Note the s t eep  descent of the  curves t o  about t = 17.5. I t  wauid, 

therefore, not be acceptable t o  use the da t a  up t o  less than the  

time t = 17.5. Hwever, there is  another descect t o  e = 25.0, 

causing the improvement shown in  Tsble 11. 

it is clear t h a t  the select ion of T = 24.0 i s  a good ene, t ha t  the 

use of fewer data would result  i n  s u b s t z ~ t i a l  4ecrease i n  parameter 

accaracy, and t h a t  the use of additional data i s  unnecessary. 

Pitch s t i r r i n g  is 

(y = 4 ,  6 = 8), 

t = 24, iy = 

From Figures 15 and 16 
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R b W @  15. Plot of the Cramer-bo Lower Bound of the Parameter covariance 
for the Parameter y from the continuous Formulation given by Equation 120. 
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Figure 16. Plot of the Cramer-Rao Lower Bound of the Parameter covariance 
for the  Parameter 6 from the continuoue Formulaticn given by Equation 120. 
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Table 11. Parameter Identifiability for Different Data Length - 
Single Blade Model (Equations 122 and 123 ) with 
Parameters y and 6 A 8, y . 

I 

i) t = 12- 14 

Parameter Y 6 ht- 1 (y) M- '(6) 

Initial Estimates 4.00 8.00 

Iteration 1 4.29 9.73 48.0 6.5 

2 4.17 9.71 37.0 8.1 

3 4.10 9.67 37.0 8.0 

ii) t = 12- 18 

Parameter Y ts M-l(y) M-'(6) 

Initial Estimates 4.00 8.00 

Iteration 1 5.36 9.67 .096 .032 

2 5.23 9.73 .lo0 .035 

3 5.23 9.73 .094 .035 

iii) t = 12 - 24 
Par ame t e r Y 6 M-lly) M-l(6) 

Initial Estimates 4.00 8.00 

Iteration 1 4 . 9 4  9.69 .007 .013 

2 4 .91  9.85 .008 .015 

3 4.91 9.83 .008 .015 
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An analogous analysis was made for a forward flight condition, 

assuming the same pitch stirring transient and the same measurement 

noise. Now seven instead of three parameters must be identified. 

Figure 17 is a plot of the standard deviation (square roots 

of the Cramer-Rao lower bound) of the various parameter estimates 

versus the time of identification. The standard deviation is plotted 

as a percentage of the parameter value. 

the following specifications: 

The graphs are drawn under 

Parameter values chosen: 

05 = .s 

e6 = 1.0 

0, = y = 4.9 

Pitch stirring excitation: 

eI = 1.5 sin [u(t - to)] 
eII = 1.5 COS k(t - tog 

Measurement noise statistics : Mean = 0 
Std. deviation = .OS 

Sarapling time At = 0.1 time units 

Advance ratio p = . 4  
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The plot gives us the degree of identifiability of the parameter 

The Lock number y = as a function of time length of identification. 

87 is identifiable with a much higher degree of accuracy than the 

various parameters in the perturbation downwash equations. This was 

seen clearly in the simulation studies for the identification of the 

parameters. Beyond a time length of T = 18 the curves flatten out, 

indicating that measurement beyond that time does not improve the 

accuracy of the parameters identified. 

result for zero advance ratio. 

necessary and also adequate for identification purposes, for the 

given sampling rate and excitation. 

This is in agreement with the 

The above time length seems to be 

In our previws simulation studies we have used a sampling 

time of T = 12 time units. From Figure 17 it appears that 

inaccuracies in our identified parameters could be attributed to 

inadequate data length for identification purposes. This factor 

will be taken into consideration in parameter identifications using 

test data. 
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5. BRIEF DESCRIPTTON OF THE EXPERIMENTAL SET-UP 

The bas i c  purpose of the experimental set-up is t o  measure 

continuously the  flapping response of the ro to r  blades t o  cyc l i c  

p i t ch  s t i r r i n g  exci ta t ion.  A sampled length of the response, together 

with t h e  input exci ta t ion,  is used t o  iden t i fy  the dynamic inflow 

parameters and hence determine the feedback e f f e c t  of the r o t o r  

wake on the  flapping response. 

The experiment can be s p l i t  up i n t o  three independent c i r c u i t s :  

1. The s t r a i n  gauge (the flapping response measuremefit) c i r c u i t  

2. The p i t ch  resolver c i r c u i t  

3. The ro to r  resolver  c i r c u i t  

A b r i e f  description of the above c i r c u i t s  are given below. 

For a de ta i l ed  description of the  experimental equipment arid 

procedure see (12). 

5.1 STRAIN GAUGE CIRCUIT 

Four s t r a i n  gauges a r e  mounted on the flexure of  each blade 

t o  form a Wheatstone bridge. 

two s t r a i n  gauges at the bottom of each flexure are  s o  connected 

t h a t  t he  tors ional  and the  lead-lag motions, i f  any, a r e  annulled. 

The ro to r  is considered t o  be very s t i f f  i n  tors ion and lead-lag. 

A schematic diagram of the s t r a i n  gauge c i r c u i t  i s  shown i n  Figure 18. 

Power is supplied t o  two arms of the bridge through two s l i p  

Two s t r a i n  gauges on the t o p  and 

rings.  

other  two arms of the bridge. 

gain amplifiers and recorded on a six channel FM tape-rc?cordcr.  

The signal is  taken out through two other s l i p  r i n g s  from the 

The signal is passed through medium- 
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Figure 18. 
Strain Gauge Circuit (S.G. - Strain Gauge; S.R. - S l i p  Ring). 

Schematic Diagram of the Balancing Network for each 
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5.2 PITCH RESOLVER CIRCUIT 

The resolver is a ro t a t ing  transformer whose output varies einu- 

; a d a l l y  * d t h  the  angular posi t ion of  t he  resolver  shaft .  

resolver  s h a f t  is connected by means of a sprocket dr ive t o  the inner 

shaft Figure 19 . 
s h a f t s  provide t h e  p i t c h  s t i r r i n g  exci ta t ion.  

o f  the d r ive  mechanisms w i l l  be given l a t e r .  The input t o  the 

resolver  is an o s c i l l a t o r  whose frequency and amplitude can be varied 

t o  get  desirable  output signal from the  resolver .  

is of a varying amplitude depending on the angular posi t ion of the 

resolver  s h a f t  with a carrier frequency corresponding t o  the 

input (osc i l l a to r )  frequency. The s ignal  i s  then passed through 

a full-wave rect i f ier- low pass f i l t e r  c i r c u i t  t o  remove t h e  c a r r i e r  

frequency. 

t h e  output level  of t he  s ignal .  

switch which works as follows (Figure 2 0 ) :  

The 

The r e l a t i v e  ve loc i ty  of  t h e  r o t o r  and the inner 

A b r i e f  descr ipt ion 

The output signal 

The signal i s  then fed i n t o  a low-gain amplif ier  t o  ad jus t  

I t  then goes through a 3-way, 2-position 

When the  switch is i n  the "OFF" posi t ion,  t he  input t o  the 

When the switch is recorder i s  a 2.5 vo l t  D.C. ba t t e ry  signal. 

f l ipped t o  the  "ON" posi t ion,  t h e  following events occur simultaneously: 

a. The motor dr ive t o  t h e  inner  shaf t  is  act ivated 

b. The signal sent t o  the resolver  i s  n o t g  the resolver s ignal  

c. The solenoid t h a t  r e t a i n s  the  inner sha f t  a t  a fixed ( t r i m )  

condition, is released 

5.3 ROMR RESOLVER CIRCUIT 

An o s c i l l a t o r  provides the input t o  the resol-ier which provides 

the  angular posi t ion o f  the main ro to r  shaf t  in a manner s imi l a r  t o  the 

input t o  the resolver  on t h e  inner s h a f t .  The output of the ro to r  
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Figure 20. The Resolver Circuit of the Pitch S t i l i r l n g  Excitation. 
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resolver is then passed through a f u l l  wave rectifier c i r c u i t .  

I t  i s  then input i n t o  a low gain amplifier for output level adjustment 

as before. 

output of which is  input t o  t h e  tape recorder. 

posi t ion the tape recorder input is a 2.5 volt  D.C. signal. When 

the switch is f l ipped t o  the  llON" posi t ion,  the motor t h a t  dr ives  

the r o t o r  s h a f t  is energized and also the  rotor resolver  signal 

is input t o  the tape recorder. 

shown i n  Figure 21. 

5.4 PITCH STIRRING EXCITATION 

I t  is then sent t o  a two-way, two-position switch, the 

In t he  "OFFtt 

A schematic diagram of  the c i r c u i t  is 

The inner sha f t  is a cy l ind r i ca l  rod which passes through the 

hollow sha f t  with an eccentr ic  pin mounted a t  the end as shown i n  

Figure 19. 

Each set of flexures is clamped t o  two opposite blades. 

of the inner sha f t  is effeccively the same as ro t a t ing  a t i l t e d  

swash p l a t e .  

loosening the p i t ch  lock nut adjust ing the blade p i t ch  on the p i t ch  

screw and then relocking the p i t ch  lock nut. 

on the other  end of  the inner sha f t .  

are used: 

Two sets of p i t ch  control f lexures are mounted on the pin. 

Rotation 

The co l l ec t ive  p i t ch  of the blades I s  adjusted by 

The dr ive i s  mounted 

Basically two dr ive mechanisms 

1. A motor i s  used :o dr ive  the inner sha f t  using a sprocket 

drive.  

transient exci ta t ion.  

A c o i l  spring mounted on the base of the inner s h a f t  i s  

used t o  drive i t  through 90, 180 and 270 degrees. The 

acceleration of  the sha f t  would be proportional t o  the 

The acceleration of the motor provides the required 

This i s  seer i n  Figure 22a. 

2.  
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Figure 21. The Rotor Resolver Circuit.  
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amount that t he  coil spr ing  was wound p r i o r  t o  its re lease .  

A view of the spr ing  excitation is shown i n  F i g u r e  22 b. 

5.5 BRIEF DESCRIPTION OF 'IHE EXPERIMENTAL PROCEDURE 

The stands are adjusted so t h a t  t he  r o t o r  plane i s  p a r a l l e l  

t o  t h e  base of t he  wind tmnel for study of the  flapping response 

for zero angle of a t tack .  

i n  the  following manner: 

The co l l ec t ive  p i t ch  of  each blade is  set 

In order t o  make r e l a t i v e  co l l ec t ive  p i t c h  changes, a beam 

of l i g h t  is focused on t he  small mirror glued t o  the  root  of  each 

rotor blade as shown i n  Figures 23a and 23b. 

p i t c h  s e t t i n g ,  the  bezm s t r i k i n g  the  mirror  a t  an angle of incidence 

of 30° 18 r e f l ec t ed  t o  a pos i t ion  marked X* on t h e  c a l i k a t e d  

scale. On changing the  co l l ec t ive  p i t c h  Figure 23b, t he  angle of 

incidence of  t he  beam changes, which is re f l ec t ed  t o  the  pos i t ion  

mrrked XI, which d i r e c t l y  reads the  change i n  the  co l l ec t ive  p i t ch  

s e t t i n g  from t he  pos i t ion  X*. 

A t  zero c ~ l l e c t i v e  

To set the  co l l ec t ive  p i t ch  t o  zero degrees, t he  zero degree 

The p i t ch  angles of the, blades eccent r ic  is mounted OA t he  inner  s h a f t .  

are adjusted till each of t he  blades have a minimum flapping response. 

This is studied on t he  scope. 

A q u a l i t a t i v e  judgemer.t regarding the  r e l a t i v e  accuracy o f  t he  

co l l ec t ive  p i t ch  s e t t i n g s  i s  made by using the  stroboscope. 

photocell r e f l ec t ing  o f f  t h in  r e f l e c t i n g  s t r i p s  (corresponding t o  

each blade) on the  ro to r  s h a f t  is used t o  t r i g g e r  t h e  stroboscope. 

The blades can be observed t o  have the same flapping angle. 

small adjustments have t o  be made i n  the co l l ec t ive  p i t ch  s e t t i n g s .  

A 

I f  not ,  
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Figure 23 a-b. 
Pitch Setting of the Rotor Blades. 

Reflective Principles used in Relative Coilective 



115 

The zero eccent r ic  on the  inner  s h a f t  is replaced by the  

f 1.4 degree eccentr ic .  

are now synchronized. 

and the  inner  s h a f t  by a locking pin. 

which is located at  the  zero azimuth angle  is used t o  a c t i v a t e  

a magnetic pick-up which generates a voltage b l ip .  

and the  rotor s h a f t s  are run i n  the  locked posi t ion.  

and the  inner  s h a f t  reso lvers  are adjusted such t h a t  t h e i r  zeros 

pass through the  center  of the  b l i p  of the  magnetic pick-up. 

inner  and the  rotor s h a f t  resolver  pos i t ions  are now synchronized. 

Since the  resolver  output q l i t u d e s  are not exact ly  s inusoidal  for 

constant ro t a t iona l  speed, t he  reso lver  s igna l s  of  both the  inner  

and the  r o t o r  s h a f t s  are recorded with the  two s h a f t s  locked. This 

provides information f o r  ca l ib ra t ion  o f  the resolvers .  

The inner  and t he  r o t o r  sha f t  resolvers  

This is done by first locking the  rotor s h a f t  

A screw on the  r o t o r  s h a f t  

The inner 

The rotor 

The 

The s h a f t s  are uncoupled and the  dr ive  f o r  the  inner  s h a f t  is  

set up. 

The flapping def lec t ion  has now t o  be ca l ibra ted .  

using the  following blade spec i f ica t ions :  

The s t r a i n  gauge c i r c u i t s  are balanced as described before. 

This i s  done by 

(a) 

(b) 

With the  above information, a 10 gram mass at 7.17 inch (blade 

one inch of t i p  def lec t ion  corresponds t o  6.23' f l a p  

one inch of t i p  def lec t ion  requires  a moment of .562 l b f - in  

t i p )  dis tance is  found to crea te  a def lec t ion  of  1.746' f l ap .  

amplif ier  gain i s  adjusted f o r  an output of 1.746 v o l t s ,  thus giving 

a one volt/degree f l a p  def lect ion.  

and then ca l ibra ted  by recording two known leve ls  o f  D.C. voltages. 

The 

The tape recorder is zeroed 
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The r o t o r  structure is mounted on a swiveling base so t h a t  the 

r o t o r  s h a f t  can be t i l t e d  f o r  d i f f e ren t  angle of a t tack posit ions.  

The r o t o r  s h a f t  t i l t e d  a t  

A f a i r i n g  . -  . i s  mounted on the r o t o r  sha f t  f o r  a strcamline flow past  it 

and t o  avoid t h e  effect of  the r o t o r  sha f t  on the blade wake effects. 

The motor t h a t  dr ives  the ro to r  shaf t  i s  turned on by the switch 

= = -3' is  shown in  Figure 24a and 24b. 

6 - 2  (Figure 21).  

by means of a solenoid. 

potentiometer, thereby changing the ro t a t iona l  flap-bending s t i f f n e s s  

w1 of the  r o t o r  blade. 

required advance r a t i o .  

The inner  sha f t  i s  held i n  posi t ion mechanically 

The r o t o r  sha f t  speed is  adjusted by a 

The wind tunnel speed i s  adjusted f o r  tne 

The tunnel speed i s  measured by a manometer. 

A s i x  channel FM tape recorder,which measures the response o f  the 

four blades and the two resolver  s igna l s ,  i s  turned on t o  record the 

signals. Switch PS-3 (Figure 20) is i n  the closed posicion and PS-2, 

the inner  s h a f t  dr ive motor, is  i n  t h e  "OFF" posi t ion.  

switch PS-2 is f l ipped,  the inner sha f t  dr ive motor is  turned on and 

the solenoid t h a t  holds the inrier shaft is  released a t  t h e  same time. 

The acceleration of  the inner sha f t  drive provides  the t r ans i en t  

exci ta t ion.  Switches PS-3 and PS-2 a r e  tu rned  of f  i n  sequence and 

the recording stopped. 

i n  Figure 25. 

h'hen the  

A view of  the experimental set-up i s  seen 
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6 .  EXPERIMENTAL DATA ANALYSIS 

The transient test results together with the trim conditions 

a A * e  recorded i n  analog form on magnetic tape. 

signals and t h e  signals from the  blade flapping s t r a in  gauges are 

processed on a PDP-8 and PDP-12 mini-computer complex. 

i den t i f i ca t ion  analysis ,  several preliminary raw data manipulations 

are necessary. 

from r o t a t i n g  t o  f ixed 

r e s u l t s  are separated from the t r i m  values. 

blade flapping measurements are removed by ident i fying the  b i a s  values 

i n  each iden t i f i ca t ion  run. 

The two resolver  

Prior t o  the  

The analog da ta  are d ig i t i zed ,  t h e  data  i s  transformed 

coordinates and the t r ans i en t  perturbation 

The small b i a s  values in the 

For low advance r a t i o s  (uf.4), i t  is seen (from 4.3) t h a t  the 

multiblade formulation gives accurate response with t h e  per iodic  

terms left  out. 

equation 67 becomes uncoupled from the rest of the equations. Hence 

the 8d response can be neglected from the iden t i f i ca t ion  procedure. 

Even f o r  u = 0 . 6 ,  a comparison of t he  y* i den t i f i ca t ion  between 

a model with the per iodic  terms, the 

e f f e c t s  included and a model neglecting a l l  of the above effects 

is surpris ingly accurate .  These are shown i n  Table 1 2  

When t h e  per iodic  terms are neglected, t he  8d 

8d equation and reverse flow 

and Table 13. Thus i t  i s  seen t h a t  neglecting the reverse fXow and 

the periodic terms a t  low advance r a t i o s  is qu i t e  acceptable. 

low advance r a t i o s  the reverse flow regions a re  r e s t r i c t e d  near the 

ro to r  hub, thus having negl igible  e f f e c t  on the flapping response 

of the ro to r  blades. 

A t  
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I te ra t ion  1 

Table 12. - 13. Comparison of the Ident i f ied y* Values Using a 
Mathematical Model which Includes Reverse Flow, 
Periodic Terms and 8d equation (Table 13) with 
a Model Excluding the Above Effects (Table 12) 
Using Data a t  ~r = 0.6. 

3.529 

Table 12  

I 
Ini t ia l  
Value 3.00 

I 

2 3.654 I 
3.654 

Parameter 1 
I n i t i a l  
Vaiue I 3.654 I 

4 I 3.580 I 

.39835 .06648 1 .01735 

.00184 .00812 .00767 

.00163 .00859 .00754 1 

.00163 .00859 .00754 I 

lble 13 

Least Squares f i t  (R) 1 
2 2 

80 a 61 I 2 2 
%I1 ' 8d 

. 001 12 .00816 .00716 .01540 

,00112 .00866 .00719 .01542 

.00112 .00795 .00726 .01557 

.00112 .00781 .00725 ,01562 I 
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An in te res thg  observation is  t h a t  at higher advance r a t i o s  the 

bias terms are Tither  large.  This is because at high 1.1, the 

trim flapping response has (seen experimentally) a small va r i a t ion  

of t h e  amplitude of the t r i m  condition with a large time period. 

can very well cause the  t r i m  subtracted from the t r ans i en t  response 

t o  be s l i g h t l y  d i f f e r e n t  from the actual  trim at  which the  t r ans i en t  

w a s  measured, thus giving rise t o  the  b i a s  values. 

If a l l  the  b-ades were iden t i ca l ly  s e t ,  the t r i m  values for 

This 

the flapping response of the blades i n  the non-rotating system would 

be nearly constant. From equation 67 it is apparent t h a t  6d has 

a moderate 2/rev. i n  its t r i m  condition, 61 and 611 have a smaller 

4/rev. input effect,and 

response. 

Figure 26. 

6, has a very small 4/rev. for  i t s  t r i m  

A t yp ica l  average trim condition data  i s  given i n  

If a constant approximation is  used for the trim values,  it 

w i l l  correspond t o  t h e  s t a r t i n g  values of t h e  t r ans i en t  responses. 

This would ensure response b i a s  values of approximately zero, though 

the t l r e v .  a i d  the 4/rev. trim' conditions show themselves i n  the 

transient data. If  the per iodic  t r i m  conditions for data obtained 

a t  low advance r a t i o s  are used, then the t r ans i en t  responses w i l l  be 

r i d  of  both the b i a s  and the 2/rev. and the 4/rev. trim variat ions.  

6.1 PITCH STIRRING EXCITATION 

Two rates of acceleration of the inner s h a f t  are  obtaiiied by 

adjust ing the potentiometer s e t t i n g  of  the eddy current t o  the motor 

t ha t  dr ives  the inner sha f t .  Plots o f  the slow and the fas t  exc i t a t ion  

are shown for normalized 911 as a function of  non-dimensionalized 

time i n  Figure 27 and Figure 28 respectively.  Care was taken t o  use 
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a length of data  i n  which the  exci ta t ion se loc i ty  i s  uniformly 

increasing. 

becones appraximately constant beyond t = 30 and any da ta  u t i l i z e d  

in t h i s  range would tend t o  give biased parameters whose values 

depend on t h i s  constant excitation frequency. 

For both rates of exci ta t ion ,  the  frequency of exci ta t ion 

The inputs are mostly progressive p i tch  s t i r r i n g  accelerations 

of the inner shaft .  Data is a l so  gathered using regressive p i tch  

s t i r r i n g  acceleration and spring loaded p i tch  s t i r r i n g  exci ta t ion.  

Details of these inputs are given i n  (12). 

for ver i f ica t ion  of the  ident i f ied  model response preciiction. 

6.2 y* IDENTIFICATION RESULTS 

These da ta  sets are used 

Figure 29 is a plot  o f  y* versus advance r a t i o  for d i f f e ren t  

The values of values of the  co l lec t ive  p i tch  s e t t i n g  a t  

y 

This ana ly t ica l  r e su l t  is f o r  low col lec t ive  pi tch se t t i ngs .  

advance ratio increases,  the  ro to r  wake ge ts  washed away faster and 

hence, the  feedback e f f ec t  of the dynamic inflow on t h e  flapping 

response decreases. This is seen i n  the increasing value of the  

ident i f ied  y* with advance r a t i o  for a l l  co l lec t ive  pi tch se t t ings .  

w = 1.18. 
1 * from momntum theory (€3 SO', . equation 58) are plotted for comparison. 

0 

As the  

1.24. The ana ly t ica l  

model approaches the  t rue  value of y asymptotically. "he experi- 

mental resul ts  f o r  8, = Oo shows tha t  around 1.1 = 0.75, y i s  

approximately equal t o  the  value of the blade Lock number y. 

shows t h a t  a t  t h i s  high advance r a t i o ,  t h e  e f f ec t  of t h e  rotor down- 

wash has become negl igible .  

= Figure 30 shows similar r e su l t s  fo r  

* 

This 
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Figure 29 and Figure 30 are combined and plotted in Figures 31a 
* 

and 31b, where y is drawn as a function of e,, the collective 

pitch setting. 

with increasing value of 8, , the y* value first drops and then 

increases beyond a collective pitch setting of around 3'. 

in apparent contradiction to the equivalent Lock number formulation 

given by equation 57, which indicates that, since with increasing 

collective pitch eo the induced mean downwash monotonically 

increases (ll), the equivalent Lock number increases. 

The consistent trend seen in these curves is that, 

This is 

The discrepancy, 

however, j a  due to the fact that the t i p  108s factor B is decreasing 

wfth increasing eo, causing an apparent decrease in the value of the 

Lock number which varies as B . 4 
* 

Also plotted in Figure 29 and Figure 30 are graphs of y for 

trim conditions of e, = 3.5'; a = -3'. This increases the downwash 

over the trim condition of 0, = 3.5'; 

the effective angle of attack of the blade. 

higher value of y*. 

as found before. 

a = Oo, and hence, decreases 

This is seen in the 

This agrees with the trend of y*versus 8, 

Studies have also been done to determine the effect of a 
0 0 range of a from 0 

of collective and lateral cyclic pitch change of the rotor blades. 

This is because the changes in the angle of attack (be)  due to a 

shaft angle of attack of a ar-: 

to -6 . The shaft tilt corresponds to a combination 

A t  $ = 0 and n (fore and aft positions): 

A0 = va/(r/R) 

A t  JI = a/2 (advancing side): 

AQ = ua/(r/R+u) 

At $-3rr/2 (retreating side) : 

A0 = ua/(r/R-u) 
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Figures 32a and 32b are plots of Ay* versus shaft tilt angles. 

Since these are essentially plots of y* versus collective pitch 

change (on a different scale), the trend of these graphs should 

agree qualitatively with those in Figures 31a and 31b. 

independent verification of the results shown in Figures 31a and 31b. 

y* has been found to have very good identifiability. Data 

length study has been done for transient data at w1 = 1.24, 8, = So, 

)I = 0.3. 

from two to five rotor revolutions. 

identified to within 4% of one another. 

This is an 

y* was identified using seven transient data lengths ranging 

In all of the cases, the y* 

6.3 L-MATRIX MODEL IDENTIFICATION 

A simplification in the flapping response of the L-matrix is 

made when the 

used for identification (see equation 64). 

following reason : 

Bo equation is neglected f r o m  the set of equations 

This is done for the 

Numerous identification tests have shown that both Lll 

to l/KM have poor identifiability (see equation 71). These are 

the two parameters associsted with A,. The primary effect of 

A, 

comparison to BI and BII responses. Since Bo is weakly coupled 

with BI and BII responses at low advance ratios, the equations 

governing the Bo and the A, responses can be neglected. 

and 

- 

is on the Bo response and the Bo transient response is small in 
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. e' * 
t o  

The reason for the small Bo t rans iont  response, and consequently 

poor i d e n t i f i a b i l i t y  of the  two associated parameters Lll and 'to seems ' .  
' t o  be due t o  the  lack of co l l ec t ive  p i t ch  exci ta t ion.  

exc i ta t ions  in the  p i t ch  and r o l l  d i rec t ions  generate adequhte 81 and 

611 responses t o  iden t i fy  the parameters associated with them. 

The above s impl i f ica t ion  reduces the  i d e n t i f i c a t i o n  problem t o  

Pi tch s t i r r i n g  

one of i d e n t i w i n g  t h e  four elements L22# L33, LS2 and LZ3 of the 

L-matrix, rI, TII (see equation 71) and y, based on the  measure- 

ments 81 and B f I ,  81 and B I I .  y appears a s  a product w i t h  B2, B3 
and B 4 i n  t h e  flapping eqtiations. The t i p  loss  f ac to r  B i s  not 

known accurately as a function of the blade p i tch  angle. Simulation 

s tudies  have shown t h a t  y i d e n t i f i e s  very accurately (within 3% 

of its t r u e  value). Hence the value of B is assumed t o  be 1.0 and 

the Lock number y is assumed as a parameter t o  be ident i f ied .  The 

iden t i f i ed  y w i l l  thus  represent, not t h e  t rue  value of the  Lock 

number, but a product of the Lock number and a power of d between 

2 and 4. Roll and p i tch  time constants T~ and TII  are  assumed 

t o  be ident ica l  i n  theory ( l l ) ,  but  wi th  increasi,ig advance r a t i o  they 

are expected t o  have increasingly d i f f e ren t  values. 

Figure33 is a plot  of y versus 8,. The trend of the curve 

with increasing eo, according t o  steady momentum theory, should be 

d a c r r u w  due t o  decraoeing value e0 the t f p  lwa foctor. 
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But the value of the Lock number increases and then drops beyond a 

certain e,, 

anelpis (la). The p lo t  also shows a decreasing var ia t ion  of y with 

increasing advance r a t i o  (graph drawn for )I - 0.2 as compared t o  the  

one drawn at )I - 0.1). 

This t rend is a l s o  found i n  a s imi la r  p l o t  f o r  hovering 

Figure 34 shows a p l o t  of the  parameter as a function of 

the advance ratio f o r  d i f f e ren t  i den t i f i ca t ion  runs. 

values predicted by momentum theory are plo t ted  f o r  comparison. 

The experimental values are several times larger than those from 

monentum theory. L33 is s!-milarly p lo t t ed  f o r  two d i f f e r e n t  w 1  

values i n  Figure 35. 

The corresponding 

The parameters L23 and L show no consis tent  t rend with 32 
var ia t ion  of the t r i m  conditions. 

r e s u l t s  l ie  around the  value of zero, 88 predicted by momentum theory. 

A l l  i den t i f i ed  values of LZ3 a re  between -0.15 and +0.15. 

A l l  i den t i f i ed  values of L32 l i e  between -0.15 and +0.4. 

The values from a l l  the  experimental 

From several  s tud ies ,  it is seen t h a t  and have approxi- 

regardless of t he i r  trim conditions. 

L 

mately equal values a t  

The value is  very close t o  the theore t ica l  value i n  (9 ).  

the value -rI becomes la rger  and T~~ becomes correspondingly smaller. 

The r a t i o  of t o  T~~ ranges from 1.5 t o  approximately 2 . 5 .  A 

typical  comparison is shown i n  Table 14. 

u = 0.1 

A t  v = 0.2, 
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Table i4. Compcrrison of Identified TI and '11 Values with 
Advance Ratio. 

Trim Values I 
eo = 5'; tul = 1.24 

eo = 5'; tul = 1.24 

eo = Oo; tul = 1.24 

eo = 0'; tul = 1.24 

Advance 
Ratio 

0.1 

0.2 

0.2 

0.4 

Identified Parameters 
f1 'i1 

8.41 7.35 

13.86 6.45 

14.28 8.86 

10.79 2.78 
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6.4 COMPARISON OF IDENTIFICATION AND PREDICTION STUDIES 

As explained before (page 126), the transient data length used 

for identification is selected such that the input transient has 

a uniform increase in velocity. Progressive input excitations of 

the slower type (Figure 2 i )  and tneir corresponding responses are 

generally used for the identification of the parameters, 

Once the parameters have been identified, based on a certain 

length of data, the goodness 02 these parameter values, and hence, 

that of the corresponding mathematical model, has to be ascertained. 

Prediction studies are, hence, required, and are made i n  the following 

manner : 

The identified parameter vslues are ' Tserted 1 1 1  L. :  the mathematical 

model. The mode1 is now complete. This coqlete model together 

with the faster transient input (Figure 28) is used t o  determine 

the response of the mathematical model to be compared with the response 

of the experimental model to the same faster excitation. 

prediction study is done for ciosely similar trim conditions as 

those in the corresponding identification stady. 

This 

mica1 examples of studies done are given here. 

1. In Figures 36a,36b and 362, data set with eo = O o ,  w = 1.24  

and p = 0.4 is modelled using t h e  y *  model aid the L-matrix 

model programs. This data is modclled so well with the y *  mode; 

that there is hardly any improvement by using t h e  more complete 

L-matrix model. 

Prediction curves for data with 

A comparison of the three models is studied for prec' iction 

results in Figures 37a and 37b. The three models :*re: 

2. w1 = 1.116, 00 = So znd u = 0.1. 
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(a) y model (neglecting downwash) 

(b) y* model (obtained f r o m  da ta  with ul - 1.24, Bo = So 

and l l =  .1) 

(c )  the more complete L-matrix model (parameters obtained from 

data w i t h  u1 = 1.24, 8, = So and )I - 0.1) 

Thou@ the model without dawnwash shows high r.m.s.  f i t  errors, 

the clcher two models giwe good degree of fi t  predict ion.  

The y model gives larger amplitude responses as compared t o  the  

other two. The Lock number y is t he  r a t i o  o f t h e  aerodynamic 

forces t o  t h e  gyroscopic ( ine r t i a )  forces. Increase i n  the  aero- 

dynamic forces increasesthe amplitude of the  response.' Increase 

in the inertia forces  decreases the  amplitude of t he  response. 

Hence, with increasi1.q value of  y, t he  response has an increasing 

amplitude. 

which shows tha t ,  s ince  y mult ip l ies  the  forcing function, t he  

response is d i r e c t l y  dependent on it, even though the  damping of 

t he  system is increased by increasing the  value of y. 

Frequency response curves show tha t  the  

value of the  amplitude response with increasing progressive 

frequency exc i ta t ion  (beyond a ce r t a in  frequency), whereas the  

true response has an opposite trend (37). 

grea te r  discrepancies a t  higher progressive frequencies between 

y 

6, and B,, predict ion curves, s ince  the  predict ion s tud ie s  a r e  

made a t  a much higher frequency of input t r ans i en t  exc i ta t ion  as  

compared t o  the  frequency range i n  which the  y 

This is a l s o  ve r i f i ed  by t he  flapping equation 52 

y* model has a decreasing 

This gives r i s e  t o  

* 
model and the physical mcdel. This is c lea r ly  seen in the  

* 
model was determined. 
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The ini t ia l  conditions f o r  these prediction s tudies  were chosen 

at t h e i r  corresponding ident i f ied  values. 

3. Prediction curves f o r  data  with w l  = 1.18s 8, - 5' and v - 0.2. 

The L-matrix parameters and y were chosen from the data  s e t  with 

= 1.24s 8, = 5' and )I = 0.2. The three models are studied as 

before (see Figures 38a and 3 a ) .  A l l  the  features found i n  t he  

previous prediction study with v = 0.1 are found i n  t h i s  study. 

An important observation is  tha t  the  model neglecting the  dynamic 

inflow (y* model) has a s igni f icant ly  smaller e r r o r  a t  v - 0.2 

as compared t o  t h a t  a t  )I = 0.1. 

with increasing advance ra t io ,  the feedback effect of the down- 

wash is diminishing. 

This indicates the fac t  tha t  

4. In Figures 39a,39b and 39c, data  s e t  with 8, = So, o1 = 1.24 

and u = 0.2 is modelled using the y* model and the more complete 

L-matrix model (with diagonal terms). The plot  shows a signifi- 

cant improvement i n  the f i t  by using the complete L-matrix model. 
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7. CONCLUSION AND DISCUSSXON OF RKSULTS 

Based on the preceding analysis of the feedback effects of the 

rotor d m c  M l o w  on the flapping response of the rotor blades to 

accelerated pitch stirrhg excitation, several interesting resulte follow. 

7.1 CONCLUSION OF MBTHOD ANALYS2S 

Apart from the several theoretically justifiable properties of 

the Haximum Likelihood method as outlined in section 2.7, simulation 

s t d e s  and comparison with other identification techniques give the 

f O ~ O W b g  results: 

1. The Maximum Likelihood method works well for both the single 

blade and the multiblade application in simulation studies. 

The Cramer-Rao lower bounds for the parameter covariances 

obuined from the Maximum Likelihood analysis provide a good 

measure of accuracy of the identified parameters and ate clearly 

superior and more meaningful than the covariance estimates 

determined with other known methods. 

2. 

7.2 RE3ULTS OF THE SIMULATION !STUDIES 

1. Single blade identification of y and eo together with the initial 

values of the flapping response at p = 0.4 give good results. 

analysis is not used for experimental data because of small 

differences betireen the different blade responses. 

The parameters of the entire L-matrix (as given by equation 96) 

converge in the simulation identification of the perturbation 

flapping response model, though with limited accuracy. The 

* 

This 

2. 
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off-diagonal terms LZ3 and LlZ and the  time constante ‘lo, 

and T~~ have been found t o  provide poor i d e n t i f i a b i l i t y  i n  certain 

Cases. 
* 

3.. The Y Iden t i f i ca t ion  study provides consistent and f a s t  convergence 

under a l l  test conditions. 

Eigenvalue analysis  of d i f f e ren t  forward f l i g h t  models show 

(Table 7 )  that for t he  cases studied, a t  low advance ratios(M.4), 

the e r r o r  in neglecting the per iodic  terms i n  the  flapping equatiaas 

is negl igible  (< 2% i n  t he  eigenvalue compariscins). 

hand, neglecting the inflow i n  the mathematical -del gives rise 

t o  signif i can t  errors .  

T h e  eigenvalue va r i a t ion  with advance r a t i o  (Table 9 )  is negligible.  

W is based 00 no va r i a t ion  of the inflow parameter values 

with advance ratio. 

A t  h€gh advance r a t i o  ( p = 0 . 8 ) ,  there  is nsa l ig ib l e  change in 

the eigenvalues (Table 10) wheq $he f&!@bqck affects of the inflow 

is neglected. 

4. 

On the other 

5. 

6. 

7 .3  RESULTS FROH EXPERIMENTAL DATA ANALYSIS 

1. The cyc l i c  p i t c h  s t i r r i n g  exc i t a t ion  w i t h  approximately constant 

s t i r r i n g  accelerat ion is adequate f o r  i d e n t i f i c a t i o n  of the 

parameter y 

(equation 7 4 ) .  

v equation accurately (equation 74), co l l ec t ive  p i t c h  exc i t a t ion  

is probabl- required. 

Progressive t r ans i en t  exci ta t ion data gives i d e n t i f i a b l e  parameters. 

* 
(equation 72) and some of t h e  L-matrix pcrameters 

To iden t i fy  the parameters associated with the  

0 

2. 

The same iden t i f i ca t ion  study on regreseive cyc l i c  p i t c h  s t i r r i n g  
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transient excitation data gives equally good resu l t s .  

y is an accurately iden t i f i ab le  parameter f o r  a l l  trim conditio- 

(,the col lec t ive  p i t ch  se t t i ng ,  the blade ro ta t iona l  etif fnese, 

the rotor shaft angle of a t tack  and advance ra t io) .  

with t h e  findings of t he  simulation studies.  In contraet ,  the  

L-matrix parameters ident i fy  only upto an advance r a t i o  of 

1~0.4. 

these parameters. 

The i d e n t i f i a b i l i t y  of t h e  parameters from the  experimental data 

is in close agreement with the  findings i n  the  simulation studies.  

The time constants T ~ ,  rI and - T ~ ~  have increasing i d e n t i f i a b i l i t y  

in that order, 

lower than those of the  parameterr of +’  L-matrix. 

The y model adequately represents the feedback e f f ec t s  of the  

induced inflow on the flapping response f o r  advance r a t i o  1130.4. 

A t  low advance r a t i o s  (~0.4), the L-matrix model provides a 

much be t t e r  correlat ion t o  the  experimental flapping responses 

as compared t o  the  y model. With increasing advance r a t i o ,  the  

difference between the f i t s  of the two mathematical models and 

the  experimental results decreases. 

The ident i f ied  values of some of the  t m a t r i x  parametere agree 

reasonably well with those obtained by using moment- theory 

(Pigures 34 and 35). 

L3s f a l l  between the values obtained from momentum theory and 

the empirical values given i n  (10). Empirical and L33 values 

* 
3. 

This concurs 

Beyond this advance r a t i o  it is not possible t o  ident i fy  

4. 

Their e f f ec t s  on the  flapping responses are 

* 
5. 

* 

6. 

Most of the ident i f ied  values of LZ2 and 
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are approximately -0.5 and -0.2 reepectivelv, for :S;-ence 

ratios between 0 and 0 . 4 .  

7. L and LZ3 identify t o  values around the momentum theory value 32 
of aero. They show no consistency or trend in their variation 

with the trim conditions. 

between -0.15 and 0.15; L lies between -0.15 and 0.4. 

The accuracy of the identified mathematical model I s  determined 

The Identified values of LZ3 lie 

32 
8. 

by applying it to tests not used for the identification. Examplee 

shorn in Figures 37 a-b w-.i 38 a-b show the adequacy and goodness 

of the inflow models chac have been used. 

7.4 AREAS OF FURTHEB STUDY 

1. The plots Qf Figures 31 a-b show a consistent trend that h s ~  not 

been explained hy th=srztfczl models (see 6.2). This sugqests 

the need for a more complete mathematical model to represent the 

variation of the equivalent Lock number y with trim condition. 
* 

2. The parameters associated with the perturbaticn equations for 

v (equation 74) are not identifiable using cyclic pitch stirring 

excitation. In order to make a complete identification, collective 

pitch trziisients will have to be added. 

0 

3. In the preceding study, dynamic rotor inflow is coupled to blade 

flapping only. 

flexibility will have a substantial effect on the dynamic inflow. 

However, the effect of the dynamic inflow on lead-lag and torsional 

It is unlikely that blade lead-lag or torsional 

deflections is expected to be of importance and should be studied. 
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8. APPENDICES 
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8.1 NOMENCLATURE 

B blade t i p  loss f ac to r  

B(3/k) innovation covariance matrix a t  time t given 
measurements till t i m e  tk (equation 323 

C W  aerodynamic damping (equation 53) 

r o t o r  t h rus t  coe f f i c i en t ,  pos i t i ve  up (equation 130) 

r o t o r  pi tching moment coeff ic ient ,  pos i t i ve  nose 
up (equation 130) 

CT 
CM 

ro to r  r o l l i n g  moment coeff ic ient ,  pos i t i ve  t o  
r i g h t  (equation 130) 

D t t )  measurement input matrix 

B energy term (equation 105) 

E w z )  expected value f o r  the probabi l i ty  density of 0 
given the measurements Z 

Nt) r o t o r  state matrix 

G ( t )  ro to r  input matrix 

H(t)  measurement state matrk 

I i d e n t i t y  matrix 

J scalar cost  c r i t e r i o n  

nondimensiona, apparent mas8 and i n e r t i a  of 
impermiable disk 

K ( t )  aerodynamic s t i f f n e s s  (equation 54) 

Kalman f i l t e r  gain a t  t i m e  t 

r o t o r  induced flow gain r a t r i x  
j K O  1 

L 

LI1, L 1 2 , . . ,  L33 parameters of the L-l nratrix (equation 73) 

M information matrix 

moment a t  the r o t c r  hub of the k t h  blade Mk 
P(t1 the s t a t e  covariance m a t r i x  

when K =K =K 
KI 11 I2 I 
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NONlB4cUTtlU (continued) 

0 

R 

% 
Tk 

W 

Y 3 
2 

a 

combined covariance matrix, where the peremrters Q 
are included in an augmented state 

system equation noise  covariance matrix 

meaeurement equation noise  covariance matrix and 
r o t o r  radius 

s e n s i t i v i t y  matrix at  time ti (equation 116) 

t-t at the ro to r  hub of the k t h  blade 

relative blade n o d  veloc i ty  (equation 133) 

relative blade tangent ia l  ve loc i ty  (equation 132) 

pos i t i ve  d e f i n i t e  weighting matrix 

set of observation vec tors  till tine t 

set of all observation vectors  (y18 y2,. b o ,  yN) 

blade sec t ion  l i f t  s lope 

number of blades on the r o t o r  

blade chord 

function of variables i n  paranthesis  in the 
system equation 

function of var iab les  in paranthesis  i n  the 
measuremeat equation 

vector  of masurement bias 

aerodynamic f lapping moments (equations 55 and 56) 

probabi l i ty  densi ty  function 

initial time 

f i n a l  t i m e  

complex var iab le  i n  the laplace transform 

nondimmsional time f o r  which the period of one 
r o t o r  revolution is 2n 

input control  vector 

(y , y ,.., j 1 2 Yj’ 
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(continued) 

measurement noiee vector of covariance R 

system noise  vector  of covariance Q 

ro to r  state vector  

r o t o r  output or measurement vector  

hub p i t ch  angle, pos i t i ve  nose up 

f lapping angle of t he  k t h  blade, p 0 8 1 t i ~ e  up 

Bo, Bd, flI, SI, multiblade flapping coordinatee: coning, d i f f e r e n t i a l  
coning (only f o r  even-bladed ro tors ) ,  longi tudinal  
and lateral cyclic-, €lapping . .. i, . :  

azimuth angle of the  k t h  blade 

parameter i den t i f i ed  i n  the  e ingle  blade ana lys i s  

d e l t a  function 

nondimensional nonnal inflow 

uniform, longitudinal and la teral  inflow components 

adaptation fac tor  f o r  t he  first mode representat ion 

first ro ta t ing  mode shape of a ro tor  blade 

angular p i t c h  s r L r i n g  speed 

blade flapping na tura l  frequency i n  the ro ta t ing  sys tem 

ro to r  angular speed 

ro tor  advance r a t i o  

innovation vector a t  time t 

uniform, longi tudinal  and lateral per turbat ion 
induced inflow components 

induced inflow of the k t h  b h d e  

air  densi ty  

blade Lock number 

system noise  ma t r ix  (equation 3)  

(equation 23) 
j 
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~ C L A ~  (continued) 

8 

a 

6 

Superscripts 

n 

Subscripts 

m 

i 

k 

0 ,  d, I, 11 

E 

Symbols 

2 

P 

collective, nose down cyclic end left cyclic 
pitch angles respectively 

instantaneous blade pitch angle 

parameters of the inflow perturbation model 
(equations 102 and 104) 

vector of unknown parameters 

rotor solidity ratio (bc/nR) 

standard deviation of the i th parameter 

positive definite weighting matrix 

meamred states in the system equation 

t h e  derivative 

estimated value 

mode of the probability density function 

transposed matrix 

equivalent value 

mean or trim value 

measwed variable 

i th sample of the variable 

blade number or iteration number 

multtblade variablee 

empirical value 

approximate equality 

defined by 
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WMENCLATURB (continued) 

I t  
% equivalent to 

t 

A increment 

c 

determinant of a matrix or abeol*ite value of a number 

product of the given tenno 

ounrmsltion of the given terms 

definite integral with limits from a to b 

less than or equal to 

greater than or equal t o  

ia 
6 

3 

Itq E U*WU eualedian norm 
W 
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8.2 DERIVATION OF TEE THRUST AIQO MOMENT 

$ AS A FUlQCTION OF THE STATE VARIABLES 

The s t a t e  of the system is 

k=l  

We now determine the thrust and moment of each blade t o  be substituted 

into the aquatione 130. 
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Blade pitch angl!a:* 8 = eo .. e1 rain @ .t eII COB Q 

v = v f v x COB Q + VI* x sin. $ 0 1  Induced flaw: 

Relative tangential velocity: 

Relative normal velocity: (+ are up) 

The thrust and moment exerted by eacn blade, as given under the 

msumptlw of no reversed flow are: 

(UT 2 8 + Up UTp dx 
%' 2 

EquatSon 132 can be substituted into equation 134 with the aid of the 

transformation 

The reeult, after soire algebraic manipulation, is: 
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- ( (B3/3.+ Bp2/2 .I. B'Clsin % - Bp 2 cos 2Jlk/2)eO Tk 

2 3 - Bl.l s in 3$/4)0, + ((B /3 4- Bv2/4)co8 J"k + B2p sin 25, k/2 

2 2 - Bp cos 3&/4)0,* + (B /2 + BLI s i n  5,k)uo 

3 2 
(B COS $k/3 B ll S h  2$k/4)~I + (B3*in Jlk/3 + B2v/4 
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Equation 130 for C, is now substituted i n  the previous equation 137. 

The 

the 

% 

I 

signs of the induced downwash vo, uI and vI1 are changed for 

proper bsitive down) convention. 

- (B 2 p/4)iII + K ( ( .4411)p2 s i n  2t  6, 

Equation 133- now be substituted in equation 135, and using the 

transfom-xion equation 136and equation 130 , the  following expansions 

for t+, and $, in terms of  the sta t2  variables, are obtained: 

b 

k=l 
- ( B 4 / 4 ) ( b  0 + id (-ilk)) s i n  JI, + ( ( 2 ~ ~ d 3 ) e ~  

2 2  2 4 -4 k - (B4/4 + 3B 1! /8)eI + (B d 2 ) v  0 + (B /4)uII  - ; E - v / 3 ) ( i ,  + id (-1) ) 
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b 

k=1 
+ IC ((Id(.886)(sin 2t)(b)Bd + (.2675)u2 (COS 4$k - l)@, 
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(The signs of vo, VI and v~~ are ROW changed for posit ive down 

sign colrventlon.) 

* - ( a ~ / 4 ) { ( 2 B ~ u / 3 ) 6 ~  - (B 4 /4 + 3B 2 2  v /8)eI 

2 2  2 2  2 - (B p e08 4t;8)e1 - (B II s in  4t/s)e1, - (B d2)u0 

2 2  + (B p cos 4t/8)BI + (B2p' sin 4t/8)BII 

3 3 - (B II cos 2t/3) id + (B p s i n  2t/3)Bd 

2 + ((.88fi) (ii sin 2t)Sd + (.2675)p (cos 4t - __ )BI 
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b 
k + C -(.886)V(1 + COS 21flk)(-1) Bd + 

k=l 

b b 



170 

The signs of vo, v I  and v 

= -(aa/4) ((B p /$ )s in  4t BI 3. (B / 4 )  + B u /8)e1, 

are changed for posit ive d m  sfgn comentiaa. I1 

2 2  4 2 2  

- (B2y2/8)sin 4t B, + (B3p,’3)sin 2t id + (B3u/3) 

2 2  2 2  
COS 2 t  8, - (L P /8)B,, + (B p /8)cos 4 t  B,, 

2 + K (-(. J)pB0 + (.886)~ COS 2t @, - ( . 2 6 7 5 ) ~  

2 sin 4 t  8, - ( .2675ip  (1 - ccs  4 t ) e I r  - (.028)p 
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8.3 

IMCLUDING REVERSE FLOW 

MULTIBLADE REFRESENTATION OF THE PERTURBATION FLAPPING EQUATIONS, 

” 
8, + (y/2)(cO + CC4 + cIp4)fiO + (ut + (y/2)PS4 s in  4t)B0 

f (y/2)(-(1/2)CSl + (CS3/2)COS 4 t  - (CS5/2)cos 4 t  

+ (PC7/2)cos 8t + PC 112 + (PC3/2)cos 4 t  

+ (y/Z)((cS3/2)sin 4 t  + (CSS/2)sin 4 t  + ( P W 2 ) s i n  4t 

- (y/2: cCC2 cos 2t + CC6 COS 6 t ) id  

+ (y/2)(DO + Y 4  cos 4t)uo + (y/2)(ES4 sin 4t)uI 

+ (y/2)(Fo + E4 cos 4t)UII 

.. 
BI + 2 h,, - B, + ( ~ 1 2 )  (CS3 s i n  4 t  i- CS5 sin 4t)bo 

+ (y/2)(co + cc2/2 + (CC2/2)COS 4 t  f cc4 cos 4 t  
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+ (CC6/2)cos 4 t  + (Crh/2)c0s 8t)(k1 + BII) + (y/2)((CC2/2)sin 4 t  

- (CCbj2)sIn 4 t  + (CC6/2)sln 8t)(iiII - B,) + (Y/2)(PCl + 

2 PC3 cos 4 t  + PC5 cos 4t  + PC7 cos 8t)B0 + u1 BI 

+ (y/2)((PS2/2)sin 4t + PS4 sin 4t + (PS6/2)sin 4t 

+ (PS6/2)sin $t)BI + (y/2)(PS2/2 - (PS%/~)COS 4t 

+ (PS6/2)cos 4 t  - (! 'S6/2)cos 8t)BII - (y/Z)(CSl s i n  2 t  

+ CS3 sin 2t + CS5 sin 6 t ) i d  - (y/Z)(PCl cos 2t 

+ PC3 cos 2t +- PC5 cos 6t + PC7 COS 6 t )Bd  

+ (y/2)(DS3 sin 4t + DS5 s i n  4 t ) w o  + (y/2)(EC1 + 

EC? cos 4: + EC5 cos 4 t ) V I  + (y/2)(FS3 s i n  4t + FS5 s i n  4t)vII 

- (y/2) (YS3 sin 4 z  + YS5 s i n  4t)BI + ( 7 / 2 )  ( Z C l  f 

If ZC3 cos 4t + ZC5 cos 4t)0 

.. 
$,, - 2 iI - B,, + (y/Z)(CSl - CS3 COS 4 t  + CS5 COS 4t!B0 

+ (y/2)((CC2/2)ci .n 4 t  - (CC6/2)sln 4t + (CC6/2)sin 4 t  
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$. ( C C 6 / 2 ) ~ h  8t)(kx + BII) + ( y / Z ) ( C O  - CC2/2 - (CC212)cos 4 t  

4 CC4 COS 4t * (cc6/2)cOS 4t (c~6/2)COs 8t)(kII - 8,) 

+ (y/2)(PC3 sin 4t - PC5 sin 4 t  + (PC7)sin 8t)B0 

+ (y/2)(PS2/2 - (PS2/2)C08 4t + (PS6/2)cos 4t - (PS6/2) 
2 

COS 8t)BI+w1 BII i- (Y/2)(-(PS2/2)8in 4t + PS4 sin 4t  

- (PSC/O)sin 4 t  - (PS6/2)sia 8t)RII + (y/Z)(CSl COO 2 t  

- CS3 COS 2t  + CS5 co8 6 t ) i d  - (y/2) (PClsin 2t - PC3 s i n  2t 

4 PC5 sin 6t - PC7 s i n  6t)Bd + (y/2) 

(DS1 - DS3 cos 4t + DS5 cos 4t)uo f (y/2)(EC3 SIR 4t 

- EC5 S%II 4t)vI + (y/2)(FS1 - PS3 COS 4 t  f FS5 c08 4t)vII 

= (y/2)(YSI - YS3 coe 4 t  + pS5 cos / d e ,  + ( y / 2 ) ( ~ ~ 3  s i n  4t  

- zc5 sin 4t)eII 

.. 
8, - ( v / 2 ) ( C C 2  COS 2 t  + CC6 COS (it);, .. (~/2)((CS1/2) 

sin 2t  f (CS3/2)sin 2 t  + (CSSI'2)sin 6 t ) ( i I  + 13111 
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(kII - ti,) - (y/2)(PS2 sin 2t + PS6 sin 6 t ) B 0  

- (~/~)((PC~/~)COS 2t + (PC~/~)COS 2t + (PCS/~)COG 6t 

4- DC6 cos 6t)vo - (y/2)(ES2 sin 2t  + ES6 sin 6t)vI 

- (y/2)(FC2 COS 2t + FC6 COS 6 t ) u I I  

(144) = - (y/2)(YC2 cos 2t)BI - (y/2)(ZS2 sin 2t  + ZS6 sin 6t)BII 

The inflow model is same as  t h a t  obta ined  without reverse flow (equatibn 68) 

except t5e t h r u s t  and the moment coef f ic ients  CT, CL and $ are: 

CT - (2 aa;b)((-DTO - DTC4 cos 4 t ) w 0  + (-ETS4 sin 4t) 

v + (-JTO - FTC4 ccs 4 t ) v I I  + (PTS4 sip 4t + PTS8 I 

s i n  8 t ) 8 ,  + (CTO + CTC4 CY 4t)ko f (-PTS2 sin 2 t  
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- PT$6 S~II 6t)Bd + (-CTC2 COS 2t - CTC6 COS 6t)Jd 

+ (1/2)(PTC3 COS 4 t  + PTQ + CTSl .. CTS3 COS 4t)BI 

4- (1/2)(CTS3 sin 4t)k1 + (1/2)(PTC3 sin 4 t  + 

CTS3 sin 4t)BII + (l/2)(-CTSl + CTS3 C 0 8  4t) iII  

% = - (ao/2b){-(2.DS1 + (-2 DS3 + 2 DSS)cos 4t)vo 

- (2 EC3 - 2 EC5)sin 4 t  vI - (2 FS1 4- (-2 FS3 

+ 2 FS5)coe 4t)vII - ((2 PC3 - 2 PC5)ein 4t 

+ 2 PC7 sin 8t)B0 - ((-2 PC1+ 2 PC3)sla 2 t  + 

2 PC7 sin 6t)Bd + (-PS2 + 2 CO - CC2 .f (PS2 - PS6 

+ 2 CC4 - CC2 - CC~)COS 4 t  + (PS6 - CC~)COS 8t)BI 

+ ((-2 PS4 + PS2 + PS6 - CC2 + CC6)eln lit + 

(PS6 - CC6)sin 8t)BII - (2 CS1 + (-2 CS3 + 2 CS5) 
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C08 4t)B0 - ( (2  C S 1  - 2 C S ~ ) C O S  2 t  + 2 C S 5  COS 6 t  

+ ((-CC 2 + C C 6 ) s i n  4t - CC6 sin 8t)B, + ((-2 CO 

+ CC2) + (-2 CC4 + CC2 + C C 6 ) c o s  4t + CC6 COS 8 t ) i I I  

+ (2 Y s 1  + (-2 ys3 f 2 YS~)COS 4 t ) e I  + (2 zc3 - 2 zc5) 

s in  4 t  eII) 

% = - (aa/2b)C-(2 D S 3  + 2 D S 5 ) s i n  4 t  vo 

- (2 E C l  + ( 2  EC3 + 2 E C 5 j c o s  4 t ) v I  - (2  FS3 + 

2 PS5)sin 4t vII + (-2 PC1 + (-2 P C 3  - 2 P C 5 ) c o s  4 t  

- 2 P C 7  COS 8t)@, + ( ( 2  P C 1  + 2 Y C ~ ) C O S  Zt + 

(2 PC5 + 2 P C ~ ) C O S  6t )Bd + ((-2 PS4 - PS2 - P S 6  

+ CC2 - C C 6 ) s i n  4c t (-PS6 + C C 6 ) s i n  8t)BI 

+ ( ( -PS2 - 2 CO - C C 2 )  + (PS2 - PS6 - 2 CC4 - CC2 

- C C 6 ) c o B  4t + ( P S 6  - C C ~ ) C O S  A t ) B I I  -1 (-2 C S 3  - 2 C S 5 )  

s i n  4 t  io + ( ( ?  CS.1 + 2 C S 3 ) s i n  2 t  + 2 CS5 sin 6 t )  id 
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+ ((-2 CO CC2) + (-2 CC4 CC2 - CC~)COS 4t - CC6 COB 8t)BI 

+ ((-CC2 .t C C 6 ) s i n  4t - CC6 s in  8t)kII 

+ (2 Y S ~  + 2 YSS)sin 4 t  ef + (2 Z C ~  + (2 ZC3 + 2 ZCS)cos 4t)0,,1 (147) 
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8.4 TABLE OF COEFFICIENTS FOR THE FLAPPING EQUATIONS GIVEN I N  8 . 3  

I$($) = PTCl cos$ + PTC3 cos 351 + PTS2 s i n  2$ 

-+ PTS4 s i n  4J, + PTS6 sin 6$ + PTS8 s i n  8$ 

v PTCl PTc3 PTS2 PTS4 PTS6 pt58 

.5 -.2509 .0157 -.l - 0059 -, 0009 0 

.6 -.3094 ,0271 -.1379 -.0103 -.0016 -.0005 

. 7  -.3723 ,043 -.1794 -.0164 m.0026 -.0009 

.8 -.4404 .0642 -.2234 -.0245 -.0039 w.0013 

.9 -.5146 .(I913 -.269 - e  035 -.OO:G -.0019 

1.0 -.5955 .1252 -.3151 -.048 -.0077 -.002 

CT($) - CTO + CTC2 cos 2JI + CTC4 cos 49 + CTC6 cos 6$ 

+ CTSl s i n $  + CTS3 s i n  314 + CTS5 s i n  5 $  ( 149) 

IJ CTO CTC2 CTC4 CTC6 CTSl CTS3 ct55 

e 5  -a3131 .0106 -.DO15 -.0002 -.2195 - .005 .0001 

e 6  - . 3195  ,0183 -.0026 - .GOO3 -.2551 -.0088 .0001 

- 7  -e3285 .0291 -.0042 -.0005 -.2863 -.014 .OOOl 

e 8  -.3404 ,0435 - . g o 6 2  -.OOO7 - .3I .22  - . O 2 1  ,0002 

. 9  -.3557 .Oh19  -.U089 -.001 - . 3 3 2 1  -.03 10002 

1.0 -.3748 .08'+8 -.0123. -.001.r( -.3454 -.0413 e0002 
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Me. ($) = YTO + YTC2 coa S$ + YTC4 COB 414 + YTSl sin JI ’ + PTS3 sin 3$ + YTS5 sin 5JI + YTS7 s in  75, (150) 

YTc2 PTc4 YTSl yTs3 YTSS YTs7 P YTO 

e 5  0.2906 e2562 -e0054 -e4575 -0489 e0015 -0002 

e 6  -e3089 ,3184 -.0092 -e5169 -0667 -0024 SO003 

- 7  -e3718 e3867 -e0146 -.5827 -086 .0038 .0004 

- 8  -e4399 e4619 0.0217 -e6535 .lo6 .0056 -0006 

e9 0.514 e545 -e0308 -.728 .1262 .0079 .0008 

1.0 0.5948 m6373 -e0421 -68048 -1461 e0108 -001 

(JI) = ZTCl cos 5, + ZTC3 cos 35, + ZTCS ccs 551 

*IT + ZTS2 sin 25, + ZTS4 sin 4Q + ZTS6 s in  651 

p ZTC1 ZTC3 ZTCS ZTS2 ZTS4 ZTS6 
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r m  ma DTQ DTSl DTs3 mss DTs7 

.5 -5329 -.0625 0 -3787 -0209 .0026 ,0009 

-6 -5604 -.09 0 .429 .OM2 ,0041 .0013 

-7  -5928 -.1226 0 .4708 .0412 .0056 .0018 

-8 -6303 -.1601 0 .SO42 .OS39 .0074 -0023 

-9 -6727 -.2026 0 .529 -0683 .0094 ,003 

1.0 .7201 -.25 0 .545 ,0843 .0118 -0037 

M (*) - ETCl cos Ip + ETC3 cos 3$ + ETC5 cos 5& + ETC7 cos 7$ 

+ ETS2 sin 2#1 + ETS4 s i n  4#1 + ETS6 s i n  6# "i 

p ETCl ETC3 ETC5 ETCT ETS2 ETS4 et56 

-5  .3079 -.0046 .OW8 0 .1123 .0024 0 

- 6  .3105 -.0079 .0014 0 .1320 .0043 0 

- 7  . a 4 1  -.0126 .0023 0 .1503 .0069 -.0001 

-8  -3188 -e0187 -0034 .COO4 -1668 .0104 w.0002 

-9  -325 -.0266 .0049 .OW6 .la13 .0149 -.OW2 

1.0 .3326 -.O365 .0067 .0008 .193S .0205 -.0002 



~~ ~- ~~~ ~- ~~ ~ 

05 00551 e0013 -00344 -00208 04171 -00488 00053 o O O O 4  

06 00785 oOOJ.2 -,OS79 -00208 04171 -00488 00053 oOOO4 

07 -102 o O O l 2  -00814 -00208 -4171 0.0488 00053 o O O O 4  

08 01255 o O O U  -0105 -00208 04171 -00488 00004 

b 9  01490 .0010 -,1285 -,0208 ,4171 0.0488 .0053 .0004 

1.0 .1726 .OOa -.1521 -.0207 .4171 -.0487 .0052 .OOO5 
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E($) 0 PC1 cos $ + PC3 cos 314 + PC5 cos 514 + PC7 cos 7$ 

+ PS2 sin 29 + PS4 sin 4# + PS6 s in  69 (E51 

Ll PC1 PC3 PC5 PC7 PS2 PS4 p56 

- 5  -154 -.0023 .0004 .OW04 .0562 .OOU -.00005 

-6 -1863 -.0048 .0008 .OOO1O .0792 .0026 0 

.7 .2198 -.0088 .0016 .00019 . lo52 .0048 0 

.8 .2551 -.015 .0027 .OW33 .1334 .OM3 0 

- 9  -2925 -.024 .0044 -1631 .01% 0 

1.0 ,3326 -.0365 .0067 .1935 .0205 0 
t o  

C(#) = CO + CC2 cos 2$ + CC4 cos 41j~ + CC6 cos 6#~  

+ CS1 sin 0 + CS3 sin 3$ + CS5 sin 5$ 

v co cc2 cc4 cc6 cs1 c s 3  cs5 
~ 

.5  .2233 -.0026 .0006 20 .1485 -0014 -.0002 

- 6  .2254 -.0054 .0013 0 .1751 .003 -.OW4 

.7 -2288 -.01 .0025 0 .1993 .0057 -.0007 

. 8  .2341 -.017 .0043 0 .22 .0097 -.0012 

.9 .2418 -,0273 .0068 0 ,2366 .0157 -.0019 

1.0 .2526 -.0416 .0103 0 .2476 .024 -.0028 

(156) 
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.S 2781 -. 0562 -.OOO6 . 3076 -. 0018 

.6 w 3019 -.0793 -. 001 3 . 3722 -.0034 

07 . 3289 -. 1053 0- 0024 4393 -.006l 

.8 .3589 -. 1336 -00042 . 5097 0.0103 

09 39l2 -.1633 -.0067 5844 - 0164 

1.0 -4251 -. 1937 -.01 . 6647 - . 0248 

-5  -01537 -1547 -.0008 -e3061 -028 -0004 

- 6  v.186 .1879 -.0019 -.3414 .029 .0008 

-7  -.2195 .2228 -.0034 -.38l5 .OS17 .0013 

.8 0.2547 . 26 -.0057 -.4255 -0649 -0022 

- 9  -.292 -3004 -.0091 0.4726 .0785 .0035 

1.0 -03321 .3447 -.0137 -.5217 .0919 .0053 
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($) = zcl cos $ + zc3 cos 3$ + zc5 cos sg + zs2 sin 218 

+ Zs4 s i n  441 + ZS6 sin 6g (159) 

v Zc.3 zc3 zc5 zs2 ZS4 t56 

-5  ,2501 -.0285 

-6  92624 -.0404 

97 -2765 -.OS4 

98 -2923 -.069 

-9 -3097 -.085 

1.0 .32@ -.lo22 

Bfv (e) = Do + Dc2 cos 2$ 
0 

+ DS1 s i n  $J + DS2 

I J m  DC2 

-moo03 -153 -.0009 0.0 

-*0007 -1845 -.0017 0.0 

-e0012 -2167 -.0029 .0002 

-.0021 .25 -.0048 .0004 

-a0034 -2842 -.0075 .0007 

-.0051 -3202 -.0112 .no12 

+ DC4 cos 46, + DC6 cos 6$ 

s in  351 + DS5 sin Sj ,  (160) 

DC4 DC6 DS1 d53 d55 

.5 -313 -.OlOC .0015 0 -2195 .005 -.0001 

-6  -3195 -.0183 .a26 .0003 .2551 .0088 -.0001 

- 7  -3285 -.0291 .OM2 .0005 .2863 ,014 -.Om2 

- 8  03404 -.0435 e0062 .0007 .3122 e021 -a0002 

-9  -3557 -.0619 .0089 .001 .3321 .03 - . OG02 
1.0 .3748 -.0848 .0121 .0014 .3454 .0413 -.0002 
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80 ($1 = Ecl cos g + Bc3 cos 33r + EC5 cos 59 
I 

+ BS2 sin 2g + ES4 sin 4g + BS6 sin 69 

v EC1 EC3 E65 ES2 ES4 ES6 

05 02221 -.001 o 0 0 0 3  0075 e0005 -e0001 

- 6  -2228 -.0021 .0007 -089 -0013 -.0003 

07 -2239 -.0038 -0012 -1025 .0024 -.0004 

-8 .2257 -,OM5 -0021 .115 .0042 -.00071 

09 -2283 -.0103 -0034 .1262 .0069 -.0011 

1.0 -2318 -.0157 .0052 .1359 .0106 -.0016 

($) - FO + FC2 cos 23r + FC4 cos 43r + FC6 cos 63r+ FS1 sin Q 

(162) 
%s 

+ FS3 sin 33r + Fs5 s i n  59 

v FO FC2 FC4 FC6 FS1 FS 3 f55 

- 5  00742 -.0736 -e0008 oOOO1 e2245 -.0018 e0002 

-6  -0875 0.0861 n.0017 -0002 .2280 -.0036 .0006 

07 e0996 -00968 -00032 o0003 02337 -e0064 .0011 

-8  -11 -,lo52 -.0054 .0005 .2425 -.OIOg .OO2 

09 -1182 -.1105 -.0088 .0008 -2554 -.0173 -0033 

1.0 .1237 -.1119 -.0133 .0012 .2732 -.0262 .0051 
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